DOI QR코드

DOI QR Code

The Taguchi Robust Design Method : Current Status and Future Directions

다구치 강건설계 방법 : 현황과 과제

  • Yum, Bong-Jin (Department of Industrial and Systems Engineering, KAIST) ;
  • Kim, Seong-Jun (Department of Industrial Engineering, Gangneung-Wonju National University) ;
  • Seo, Sun-Keun (Department of Industrial and Management Systems Engineering, Dong-A University) ;
  • Byun, Jai-Hyun (Department of Industrial and Systems Engineering, Gyeongsang National University) ;
  • Lee, Seung-Hoon (Department of Industrial and Management Engineering, Dong-Eui University)
  • 염봉진 (KAIST 산업 및 시스템공학과) ;
  • 김성준 (강릉 원주대학교 산업공학과) ;
  • 서순근 (동아대학교 산업경영공학과) ;
  • 변재현 (경상대학교 산업시스템공학부) ;
  • 이승훈 (동의대학교 산업경영공학과)
  • Received : 2013.08.09
  • Accepted : 2013.09.16
  • Published : 2013.10.15

Abstract

During the past several decades, the Taguchi robust design method has been widely used in various fields successfully. On the other hand, some researchers and practitioners have criticized the method with respect to the way of utilizing orthogonal arrays, the signal-to-noise ratio as a performance measure, data analysis methods, etc., and proposed alternative approaches to robust design. This paper introduces the Taguchi method first, evaluates the validity of the criticisms, and discusses advantages and disadvantages of each alternative. Finally, research issues to be addressed for effective robust design are presented.

Keywords

References

  1. Antony, J. (2000), Multi-Response Optimization in Industrial Experiments using Taguchi's Quality Loss Function and Principal Component Analysis, Quality and Reliability Engineering International, 16(1), 3-8. https://doi.org/10.1002/(SICI)1099-1638(200001/02)16:1<3::AID-QRE276>3.0.CO;2-W
  2. Ardakani, M. K. and Wulff, S. S. (2012), An Overview of Optimization Formulations for Multiresponse Surface Problems, Quality and Reliability Engineering International, 29(1), 3-16.
  3. Bisgaard, S. (1997), Design Experiments for Tolerancing Assembled Products, Technometrics, 39(2), 142-152. https://doi.org/10.1080/00401706.1997.10485079
  4. Bisgaard, S., Graves, S., and Shin, G. (2000), Tolerancing Mechanical Assemblies with CAD and DOE, Journal of Quality Technology, 32(3), 231-240. https://doi.org/10.1080/00224065.2000.11979999
  5. Box, G. (1988), Signal-to-Noise Ratios, Performance Criteria, and Transformations, with discussions, Technometrics, 30(1), 1-17. https://doi.org/10.1080/00401706.1988.10488313
  6. Box, G. and Jones, S. (1986), Discussion of "Testing in Industrial Experiments with Ordered Categorical Data" by V. N. Nair, Technometrics, 28(4), 295-301. https://doi.org/10.2307/1268976
  7. Box, G. and Jones, S. (1992), Split-Plot Designs for Robust Product Experimentation, Journal of Applied Statistics, 19(1), 3-26. https://doi.org/10.1080/02664769200000001
  8. Byun, J. H. and Kim, K. J. (1998), A Desirability Function Approach to the Robust Design for Multiple Quality Characteristics, Journal of the Korean Institute of Industrial Engineers, 24(2), 287-296.
  9. Cho, B. R., Kim, Y. J., Kimbler, D. L., and Phillips, M. D. (2000), An Integrated Joint Optimization Procedure for Robust and Tolerance Design, International Journal of Production Research, 38(10), 2309-2325. https://doi.org/10.1080/00207540050028115
  10. Del Castillo, E. and Montgomery, D. C. (1993), A Nonlinear Programming Solution to the Dual Response Problem, Journal of Quality Technology, 25(3), 199-204. https://doi.org/10.1080/00224065.1993.11979454
  11. Deng, J. L. (1982), Control Problems of Grey Systems, Systems and Control Letters, 1(5), 288-294. https://doi.org/10.1016/S0167-6911(82)80025-X
  12. D'Errico, J. R. and Zaino, Jr., N. A. (1988), Statistical Tolerancing Using Modification of Taguchi's Method, Technometrics, 30(4), 397-405. https://doi.org/10.1080/00401706.1988.10488434
  13. Derringer, G. and Suich, R. (1980), Simultaneous Optimization of Several Response Variables, Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968
  14. Faraway, J. J. (1997), Regression Analysis for a Functional Response, Technometrics, 39(3), 254-261. https://doi.org/10.1080/00401706.1997.10485118
  15. Fogliatto, F. S. (2008), Multiresponse Optimization of Products with Functional Quality Characteristics, Quality and Reliability Engineering International, 24(8), 927-939. https://doi.org/10.1002/qre.939
  16. Gauri, S. K. and Pal, S. (2010), Comparison of Performances of Five Prospective Approaches for the Multi-Response Optimization, International Journal of Advanced Manufacturing Technology, 48(9-12), 1205-1220. https://doi.org/10.1007/s00170-009-2352-9
  17. Goethals, P. L. and Cho, B. R. (2011), The Development of a Robust Design Methodology for Time-oriented Dynamic Quality Characteristics with a Target Profile, Quality and Reliability Engineering International, 27(4), 403-414. https://doi.org/10.1002/qre.1122
  18. Govaerts, B. and Noel, J. (2005), Analysing the Results of a Designed Experiment When the Response is a Curve : Methodology and Application in Metal Injection Moulding, Quality and Reliability Engineering International, 21(5), 509-520. https://doi.org/10.1002/qre.737
  19. Hamada, M. (1992), An Explanation and Criticism of Minute Accumulating Analysis, Journal of Quality Technology, 24(2), 70-77.
  20. Hamada, M. and Nelder, J. A. (1997), Generalized Linear Models for Quality Improvement Experiments, Journal of Quality Technology, 29(3), 292-304. https://doi.org/10.1080/00224065.1997.11979770
  21. Hamada, M. and Wu, C. F. J. (1990), A Critical Look at Accumulation Analysis and Related Methods, with discussions, Technometrics, 32(2), 119-130. https://doi.org/10.1080/00401706.1990.10484625
  22. Hirotsu, C. (1990), Discussion of "A Critical Look at Accumulation Analysis and Related Methods" by M. Hamada and C. F. J. Wu, Technometrics, 32(2), 133-136.
  23. Jeang, A. (1999), Optimal Tolerance Design by Response Surface Methodology, International Journal of Production Research, 37(14), 3275- 3288. https://doi.org/10.1080/002075499190284
  24. Jeng, Y. C. and Guo, S. M. (1996), Quality Improvement for RC06 Chip Resistor, Quality and Reliability Engineering International, 12(6), 439-445. https://doi.org/10.1002/(SICI)1099-1638(199611)12:6<439::AID-QRE61>3.0.CO;2-0
  25. Jeyapaul, R., Shahabudeen, P., and Krishnaiah, K. (2005), Quality Management Research by Considering Multi-response Problems in the Taguchi Method - a Review, International Journal of Advanced Manufacturing Technology, 26(11-12), 1331-1337. https://doi.org/10.1007/s00170-004-2102-y
  26. Joseph, V. R. and Wu, C. F. J. (2002), Robust Parameter Design of Multiple Target Systems, Technometrics, 44(4), 338-346. https://doi.org/10.1198/004017002188618536
  27. Jung, J. R. and Yum, B. J. (2011), Uniformity and Signal-to-noise Ratio for Static and Dynamic Parameter Designs of Deposition Processes, International Journal of Advanced Manufacturing Technology, 54(5-8), 619-628. https://doi.org/10.1007/s00170-010-2957-z
  28. Kackar, R. N. (1985), Off-Line Quality Control, Parameter Design, and the Taguchi Method, with discussions, Journal of Quality Technology, 17(4), 176-188. https://doi.org/10.1080/00224065.1985.11978964
  29. Kim, S. J. (2005), An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method, International Journal of Fuzzy Logic and Intelligent Systems, 5(3), 183-188. https://doi.org/10.5391/IJFIS.2005.5.3.183
  30. Kim, S. J. (2013), A Review on the Taguchi Method and Its Alternatives for Dynamic Robust Design, Journal of the Korean Institute of Industrial Engineers, 39(5), 351-360. https://doi.org/10.7232/JKIIE.2013.39.5.351
  31. Kim, Y. J. (2002), Response Surface Approach to Integrated Optimization Modeling for Parameter and Tolerance Design, Journal of the Korean Society for Quality Management, 30(4), 58-67.
  32. Kuhn, A. M., Carter, W. H., and Myers, R. H. (2000), Incorporating Noise Factors into Experiments with Censored Data, Technometrics, 42(4), 376-383. https://doi.org/10.1080/00401706.2000.10485710
  33. Lee, Y. and Nelder, J. A. (2003), Robust Design via Generalized Linear Models, Journal of Quality Technology, 35(1), 2-12. https://doi.org/10.1080/00224065.2003.11980187
  34. Lee, P. H. and Yum, B. J. (2003), Multi-Characteristics Parameter Design : A Desirability Function Approach Based on Process Capability Indices, International Journal of Reliability, Quality, and Safety Engineering, 10(4), 445-461. https://doi.org/10.1142/S0218539303001263
  35. Leon, R. V., Shoemaker, A. C., and Kacker, R. N. (1987), Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios, with discussions, Technometrics, 29(3), 253-265. https://doi.org/10.1080/00401706.1987.10488231
  36. Lesperance, M. L. and Park, S. M. (2003), GLMs for the Analysis of Robust Designs with Dynamic Characteristics, Journal of Quality Technology, 35(3), 253-263. https://doi.org/10.1080/00224065.2003.11980219
  37. Liao, H. C. (2006), Multi-Response Optimization Using Weighted Principal Component, International Journal of Advanced Manufacturing Technology, 27(7-8), 720-725. https://doi.org/10.1007/s00170-004-2248-7
  38. Lin, D. and Tu, W. (1995), Dual Response Surface Optimization, Journal of Quality Technology, 27(1), 34-39. https://doi.org/10.1080/00224065.1995.11979556
  39. Lin, J. L. and Lin, C. L. (2002), The Use of the Orthogonal Array with Grey Relational Analysis to Optimize the Electrical Discharge Machining Process with Multiple Performance Characteristics, International Journal of Machine Tools and Manufacture, 42(2), 237-244. https://doi.org/10.1016/S0890-6955(01)00107-9
  40. Lin, J. L. and Tarng Y. S. (1998), Optimization of the Multi-response Process by the Taguchi Method with Grey Relational Analysis, Journal of Grey System, 10(4), 355-370.
  41. Lin, J. L., Wang, K. S., Yan, B. H., and Tarng, Y. S. (2000), Optimization of the Electrical Discharge Machining Process Based on the Taguchi Method with Fuzzy Logics, Journal of Material Processing Technology, 102(1-3), 48-55. https://doi.org/10.1016/S0924-0136(00)00438-6
  42. Logothetis, N. (1990), Box-Cox Transformations and the Taguchi Method, Applied Statistics, 39(1), 31-48. https://doi.org/10.2307/2347809
  43. Lucas, J. M. (1994), How to Achieve a Robust Process Using Response Surface Methodology, Journal of Quality Technology, 26(4), 248-260. https://doi.org/10.1080/00224065.1994.11979537
  44. Murphy, T. E., Tsui, K. L., and Allen, J. K. (2005), A Review of Robust Design Methods for Multiple Responses, Research in Engineering Design, 15(4), 201-215. https://doi.org/10.1007/s00163-004-0054-8
  45. Myers, R. H., Khuri, A. I. and Vining, G. (1992), Response Surface Alternatives to the Taguchi Robust Parameter Design Approach, The American Statistician, 46(2), 131-139.
  46. Myers, W. R., Brenneman, W. A., and Myers, R. H. (2005), A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model, Journal of Quality Technology, 37(2), 130-138. https://doi.org/10.1080/00224065.2005.11980311
  47. Nair, V. N. (1986), Testing in Industrial Experiments with Ordered Categorical Data, Technometrics, 28(4), 283-291. https://doi.org/10.2307/1268974
  48. Nair, V. N. (Ed.) (1992), Taguchi's Parameter Design : A Panel Discussion, Technometrics, 34(2), 127-161. https://doi.org/10.1080/00401706.1992.10484904
  49. Nair, V. N. and Pregibon, D. (1986), A Data Analysis Strategy for Quality Engineering Experiments, AT&T Technical Journal, 65(3), 73-84. https://doi.org/10.1002/j.1538-7305.1986.tb00372.x
  50. Nair, V. N., Taam, W. and Ye, K. Q. (2002), Analysis of Functional Responses from Robust Design Studies, Journal of Quality Technology, 34(4), 355-370. https://doi.org/10.1080/00224065.2002.11980169
  51. Nelder, J. A. and Lee, Y. (1991), Generalized Linear Models for the Analysis of Taguchi-type Experiments, Applied Stochastic Models and Data Analysis, 7(1), 107-120. https://doi.org/10.1002/asm.3150070110
  52. Opricovic, S. and Tzeng, G. H. (2004), Compromise Solution by MCDM Methods : A Comparative Analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
  53. Pal, S. and Gauri, S. K. (2010), Assessing Effectiveness of the Various Performance Metrics for Multi-response Optimization Using Multiple Regression, Computers and Industrial Engineering, 59(4), 976-985. https://doi.org/10.1016/j.cie.2010.09.009
  54. Phadke, M. S. (1989), Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, NJ.
  55. Pukelsheim, F. (2006), Optimal Design of Experiments, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  56. Robinson, T. J., Borror, C., and Myers, R. H. (2004), Robust Parameter Design : A Review, Quality and Reliability Engineering International, 20(1), 81-101. https://doi.org/10.1002/qre.602
  57. Seo, H. S. and Kwak, B. M. (2002), Efficient Statistical Tolerance Analysis for General Distributions Using Three-point Information, International Journal of Production Research, 40(4), 931-944. https://doi.org/10.1080/00207540110095709
  58. Seo, S. K. and Choi, J. D. (1994), Robust Parameter Design for Multiple Performance Characteristics, Journal of the Korean Society for Quality Management, 22(3), 34-53.
  59. Shiau, G. H. (1990), A Study of the Sintering Properties of Iron Ores using the Taguchi's Parameter Design. Journal of Chinese Statistical Association, 28(2), 253-275.
  60. Shoemaker, A. C., Tsui, K. L., and Wu, C. F. J. (1991), Economical Experimentation Methods for Robust Design, Technometrics, 33(4), 415-427. https://doi.org/10.1080/00401706.1991.10484870
  61. Singh, P. K., Jain, P. K., and Jain, S. C. (2009a), Important Issues in Tolerance Design of Mechanical Assemblies. Part 1 : Tolerance Analysis, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture-Part B, 223(10), 1225-1247. https://doi.org/10.1243/09544054JEM1304A
  62. Singh, P. K., Jain, P. K. and Jain, S. C. (2009b), Important Issues in Tolerance Design of Mechanical Assemblies. Part 2 : Tolerance Synthesis, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture-Part B, 223(10), 1249-1287. https://doi.org/10.1243/09544054JEM1304B
  63. Soh, W. and Yum, B. J. (2012), A Comparison of Parameter Design Methods for Multiple Performance Characteristics, Journal of the Korean Institute of Industrial Engineers, 38(3), 198-207. https://doi.org/10.7232/JKIIE.2012.38.3.198
  64. Su, C. T. and Tong, L. I. (1997), Multi-response Robust Design by Principal Component Analysis, Total Quality Management, 8(6), 409-416. https://doi.org/10.1080/0954412979415
  65. Taguchi, G. (1978), Performance Analysis Design, International Journal of Production Research, 16(6), 521-530. https://doi.org/10.1080/00207547808930043
  66. Taguchi, G. (1986), Introduction to Quality Engineering, Asian Productivity Organization, Tokyo.
  67. Taguchi, G. (1987), System of Experimental Design, Vols. 1 and 2, UNIPUB/Kraus International Publications, White Plains, NY.
  68. Taguchi, G. (1988a), Quality Engineering in Research and Development, Quality Engineering Series, Volume 1, JSA, Tokyo (Korean edition published by KSA, 1991).
  69. Taguchi, G. (1988b), Design of Experiments for Quality Design, Quality Engineering Series, Volume 4, JSA, Tokyo (Korean edition published by KSA, 1991).
  70. Taguchi, G. (1988c), Quality Engineering Case Studies from Japan, Quality Engineering Series, Volume 5, JSA, Tokyo (Korean edition published by KSA, 1991).
  71. Taguchi, G. (1990a), Quality Engineering Case Studies from the United States and Europe, Quality Engineering Series, Volume 6, JSA, Tokyo (Korean edition published by KSA, 1991).
  72. Taguchi, G. (1990b), Quality Engineering Case Studies in Measurement, Quality Engineering Series, Volume 7, JSA, Tokyo (Korean edition published by KSA, 1991).
  73. Taguchi, G., Chowdhury, S., and Wu, Y. (2005), Taguchi's Quality Engineering Handbook, Wiley, NJ.
  74. Taguchi, G. and Konishi, S. (1959), Experimental Assignment Methods Using Orthogonal Tables (in Japanese), JUSE Press, Tokyo.
  75. Tai, C. Y., Chen, T. S., and Wu, M. C. (1992), An Enhanced Taguchi Method for Optimizing SMT Processes, Journal of Electronics Manufacturing, 2(3), 91-100. https://doi.org/10.1142/S0960313192000121
  76. Tarng, Y. S., Juang, S. C. and Chang, C. H. (2002), The Use of Grey-Based Taguchi Methods to Determine Submerged are Welding Process Parameters in Hardfacing, Journal of Material Processing Technology, 128(1-3), 1-6. https://doi.org/10.1016/S0924-0136(01)01261-4
  77. Tong, L. I. and Su, C. T. (1997), Optimizing Multi-response Problems in the Taguchi Method by Fuzzy Multiple Attribute Decision Making, Quality and Reliability Engineering International, 13(1), 25-34. https://doi.org/10.1002/(SICI)1099-1638(199701)13:1<25::AID-QRE59>3.0.CO;2-B
  78. Tong, L. I., Chen, C. C., and Wang, C. H. (2007), Optimization of Multiresponse Processes Using the VIKOR Method, International Journal of Advanced Manufacturing Technology, 31(11-12), 1049-1057. https://doi.org/10.1007/s00170-005-0284-6
  79. Tribus, M. and Szonyi, G. (1989), An Alternative View of the Taguchi Approach, Quality Progress, 22(5), 46-52.
  80. Vining, G. G. and Myers, R. H. (1990), Combining Taguchi and Response Surface Philosophies : A Dual Response Approach, Journal of Quality Technology, 22(1), 38-45. https://doi.org/10.1080/00224065.1990.11979204
  81. Welch, W. J., Yu, T. K., Kang, S. M., and Sacks, J. (1990), Computer Experiments for Quality Control by Parameter Design, Journal of Quality Technology, 22(1), 15-22. https://doi.org/10.1080/00224065.1990.11979201
  82. Wu, C. F. J. and Chen, Y. Y. (1992), A Graph-Aided Method for Planning Two-Level Experiments When Certain Interactions are Important, Technometrics, 34(2), 162-175. https://doi.org/10.1080/00401706.1992.10484905
  83. Wu, C. F. J. and Hamada, M. S. (2009), Experiments : Planning, Analysis, and Optimization, 2nd Ed., Wiley, Hoboken, NJ.
  84. Wu, F. C. and Yeh, C. H. (2006), A Comparative Study on Optimization Methods for Experiments with Ordered Categorical Data, Computers and Industrial Engineering, 50(3), 220-232. https://doi.org/10.1016/j.cie.2006.04.001
  85. Yadav, O. P., Bhamare, S. S., and Rathore, A. (2010), Reliability-Based Robust Design Optimization : A Multi-Objective Framework Using Hybrid Quality Loss Function, Quality and Reliability Engineering International, 26(1), 27-41. https://doi.org/10.1002/qre.1027
  86. Yum, B. J., Ko, S. W., and Kim, S. J. (1990), The Taguchi Method for Product and Process Designs, Korean Management Science Review, 7(2), 3-21.
  87. Yum, B. J., Lee, B. Y., Ko, S. W., and Kim, J. H. (1991), Principles for Constructing Taguchi Experimental Designs, The Korean Journal of Applied Statistics, 4(1), 47-63.

Cited by

  1. Understanding Robust Design with Paper Helicopter Experiment vol.39, pp.5, 2013, https://doi.org/10.7232/JKIIE.2013.39.5.374
  2. Trends and Future Directions of Quality Control and Reliability Engineering vol.40, pp.6, 2014, https://doi.org/10.7232/JKIIE.2014.40.6.526
  3. Application of kernel principal component analysis to multi-characteristic parameter design problems pp.1572-9338, 2018, https://doi.org/10.1007/s10479-015-1889-2
  4. Taguchi Robust Design of a Wind Shear Mitigation Fence to Enhance Wind Turbine Efficiency vol.12, pp.S2, 2016, https://doi.org/10.7849/ksnre.2016.10.12.S2.85
  5. A Study on the Optimization of Electroplating Conditions for Silicon Vias Using the Taguchi Experimental Design Method pp.2005-4602, 2019, https://doi.org/10.1007/s12541-019-00087-z