DOI QR코드

DOI QR Code

Stress Analysis Using Finite Element Modeling of a Novel RF Microelectromechanical System Shunt Switch Designed on Quartz Substrate for Low-voltage Applications

  • Singh, Tejinder (Department of Electronics & Communication Engineering, Lovely Professional University) ;
  • Khaira, Navjot K. (Department of Electronics & Communication Engineering, Lovely Professional University) ;
  • Sengar, Jitendra S. (Department of Electronics & Communication Engineering, Lovely Professional University)
  • Received : 2013.06.24
  • Accepted : 2013.06.30
  • Published : 2013.10.25

Abstract

This paper presents a novel shunt radio frequency microelectromechanical system switch on a quartz substrate with stiff ribs around the membrane. The buckling effects in the switch membrane and stiction problem are the primary concerns with RF MEMS switches. These effects can be reduced by the proposed design approach due to the stiffness of the ribs around the membrane. A lower mass of the beam and a reduction in the squeeze film damping is achieved due to the slots and holes in the membrane, which further aid in attaining high switching speeds. The proposed switch is optimized to operate in the k-band, which results in a high isolation of -40 dB and low insertion loss of -0.047 dB at 21 GHz, with a low actuation voltage of only 14.6 V needed for the operation the switch. The membrane does not bend with this membrane design approach. Finite element modeling is used to analyze the stress and pull-in voltage.

Keywords

References

  1. K. E. Peterson, IBM J. Res. Develop., 23, 376 (1979) [DOI: http://dx.doi.org/10.1147/RD.234.0376].
  2. C. T. Nguyen, The 11th Annual International Workshop on Micro Electro Mechanical Systems (Heidelberg) (Center for Integrated Sensors & Circuits, Michigan Univ., Ann Arbor, MI, USA 1998 Jan 25 - 29) p. 1 [DOI: http://dx.doi.org/10.1109/MEMSYS.1998.659719].
  3. G. M. Rebeiz, RF MEMS Theory, Design and Technology (John Wiley & Sons, USA, 2003).
  4. J. B. Muldavin and G. M. Rebeiz, IEEE Trans. Microw. Theory Techn. , 48, 1053 (2000) [DOI: http://dx.doi.org/10.1109/22.904744].
  5. Z. J. Yao, S. Chen, E. Eshelman, D. Denniston and C. L. Goldsmith, IEEE J. Microelectromech. Systems, 8, 129 (1999) [DOI: http://dx.doi.org/10.1109/84.767108].
  6. S. P. Pacheco, L. P. B. Katehi and C. T. Nguyen, Microwave Symposium Digest. 2000 IEEE MTT-S International (USA) (Radiat. Lab., Michigan Univ., Ann Arbor, MI, USA 2000 Jun 11-16) p. 165 [DOI: http://dx.doi.org/10.1109/MWSYM.2000.860921].
  7. M. Ruan, J. Shen and C. B. Wheeler, Micro Electro Mechanical Systems, 2001. MEMS 2011. The 14th IEEE International Conference on (USA) (Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA 2001 Jan 21-25) p. 224 [DOI: http://dx.doi. org/10.1109/MEMSYS.2001.906519].
  8. H. C. Lee, J. H. Park, J. Y. Park, H. J. Nam and J. U. Bu, Journal of Micromechanics and Microengineering. 15, 2098 (2005) [DOI: http://dx.doi.org/10.1088/0960-1317/15/11/015].
  9. M. Daneshmand, S. Fauladi, R. R. Mansour, M. Lisi and T. Stajcer, Microwave Symposium Digest, 2009. MTT-S International (USA) (Microwave to Millimeter-wave Lab., Univ. of Alberta, Edmonton, AB, Canada 2009 Jun 07-12) p. 1217 [DOI: http:// dx.doi.org/10.1109/MWSYM.2009.5165922].
  10. W. M. V. Spenger, R. Puers and I. D. Wolf, J. Adhesion Sci. Technol. 17, 563 (2003) [DOI: http://dx.doi.org/10.1163/15685610360554410].
  11. L. A. Rocha, E. Cretu and R. F. Wolffenbuttel, Tech. Proc. of the 2004 NSTI Nanotech. Conference and Trade Show (USA) (Nano Science and Tech. Inst. Boston, MA, 2004 Vol. 2) p. 203 (2004).
  12. M. F. Badia, E. Butrado and A. M. Ionescu, IEEE J. Microelectromech. Systems, 21, 1229 (2012). https://doi.org/10.1109/JMEMS.2012.2203101
  13. J. B. Muldavin and G. M. Rebeiz, IEEE Trans. Microw. Theory Techn. , 48, 1045 (2000) [DOI: http://dx.doi.org/10.1109/22.904743].
  14. L. X. Zhang and Y. P. Zhao, Microsys. Technol. 9, 420 (2003) [DOI: http://dx.doi.org/10.1007/S00542-002-0250-2].
  15. C. L. Goldsmith and D. I. Forehand, IEEE Microw. Wireless Compon. Lett. 15, 718 (2005) [DOI: http://dx.doi.org/10.1109/LMWC.2005.856827].
  16. G. Wang, RF MEMS switches with novel materials nd micromachining techniques for SOC/SOP RF front ends, Ph.D. Dissertation, (Georgia Institute of Technology, Atlanta, GA, 2006) [DOI: http://dx.doi.org/1853/14112].

Cited by

  1. Finite element modeling of a Ti based compact RF MEMS series switch design for harsh environment vol.21, pp.10, 2015, https://doi.org/10.1007/s00542-014-2329-y
  2. Design and finite element modeling of series-shunt configuration based RF MEMS switch for high isolation operation in K–Ka band vol.14, pp.1, 2015, https://doi.org/10.1007/s10825-014-0636-2
  3. High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration vol.2014, 2014, https://doi.org/10.1155/2014/605894
  4. Stress analysis of perforated graphene nano-electro-mechanical (NEM) contact switches by 3D finite element simulation vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3483-9
  5. Three-Dimensional Finite Element Method Simulation of Perforated Graphene Nano-Electro-Mechanical (NEM) Switches vol.8, pp.8, 2017, https://doi.org/10.3390/mi8080236
  6. RF MEMS Perforated Shunt Switch Design on Hafnium Oxide Substrate for Low Actuation Voltage 2016, https://doi.org/10.18178/ijeee.4.6.500-504
  7. Performance analysis of series: shunt configuration based RF MEMS switch for satellite communication applications pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3907-1