References
- K. E. Peterson, IBM J. Res. Develop., 23, 376 (1979) [DOI: http://dx.doi.org/10.1147/RD.234.0376].
- C. T. Nguyen, The 11th Annual International Workshop on Micro Electro Mechanical Systems (Heidelberg) (Center for Integrated Sensors & Circuits, Michigan Univ., Ann Arbor, MI, USA 1998 Jan 25 - 29) p. 1 [DOI: http://dx.doi.org/10.1109/MEMSYS.1998.659719].
- G. M. Rebeiz, RF MEMS Theory, Design and Technology (John Wiley & Sons, USA, 2003).
- J. B. Muldavin and G. M. Rebeiz, IEEE Trans. Microw. Theory Techn. , 48, 1053 (2000) [DOI: http://dx.doi.org/10.1109/22.904744].
- Z. J. Yao, S. Chen, E. Eshelman, D. Denniston and C. L. Goldsmith, IEEE J. Microelectromech. Systems, 8, 129 (1999) [DOI: http://dx.doi.org/10.1109/84.767108].
- S. P. Pacheco, L. P. B. Katehi and C. T. Nguyen, Microwave Symposium Digest. 2000 IEEE MTT-S International (USA) (Radiat. Lab., Michigan Univ., Ann Arbor, MI, USA 2000 Jun 11-16) p. 165 [DOI: http://dx.doi.org/10.1109/MWSYM.2000.860921].
- M. Ruan, J. Shen and C. B. Wheeler, Micro Electro Mechanical Systems, 2001. MEMS 2011. The 14th IEEE International Conference on (USA) (Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA 2001 Jan 21-25) p. 224 [DOI: http://dx.doi. org/10.1109/MEMSYS.2001.906519].
- H. C. Lee, J. H. Park, J. Y. Park, H. J. Nam and J. U. Bu, Journal of Micromechanics and Microengineering. 15, 2098 (2005) [DOI: http://dx.doi.org/10.1088/0960-1317/15/11/015].
- M. Daneshmand, S. Fauladi, R. R. Mansour, M. Lisi and T. Stajcer, Microwave Symposium Digest, 2009. MTT-S International (USA) (Microwave to Millimeter-wave Lab., Univ. of Alberta, Edmonton, AB, Canada 2009 Jun 07-12) p. 1217 [DOI: http:// dx.doi.org/10.1109/MWSYM.2009.5165922].
- W. M. V. Spenger, R. Puers and I. D. Wolf, J. Adhesion Sci. Technol. 17, 563 (2003) [DOI: http://dx.doi.org/10.1163/15685610360554410].
- L. A. Rocha, E. Cretu and R. F. Wolffenbuttel, Tech. Proc. of the 2004 NSTI Nanotech. Conference and Trade Show (USA) (Nano Science and Tech. Inst. Boston, MA, 2004 Vol. 2) p. 203 (2004).
- M. F. Badia, E. Butrado and A. M. Ionescu, IEEE J. Microelectromech. Systems, 21, 1229 (2012). https://doi.org/10.1109/JMEMS.2012.2203101
- J. B. Muldavin and G. M. Rebeiz, IEEE Trans. Microw. Theory Techn. , 48, 1045 (2000) [DOI: http://dx.doi.org/10.1109/22.904743].
- L. X. Zhang and Y. P. Zhao, Microsys. Technol. 9, 420 (2003) [DOI: http://dx.doi.org/10.1007/S00542-002-0250-2].
- C. L. Goldsmith and D. I. Forehand, IEEE Microw. Wireless Compon. Lett. 15, 718 (2005) [DOI: http://dx.doi.org/10.1109/LMWC.2005.856827].
- G. Wang, RF MEMS switches with novel materials nd micromachining techniques for SOC/SOP RF front ends, Ph.D. Dissertation, (Georgia Institute of Technology, Atlanta, GA, 2006) [DOI: http://dx.doi.org/1853/14112].
Cited by
- Finite element modeling of a Ti based compact RF MEMS series switch design for harsh environment vol.21, pp.10, 2015, https://doi.org/10.1007/s00542-014-2329-y
- Design and finite element modeling of series-shunt configuration based RF MEMS switch for high isolation operation in K–Ka band vol.14, pp.1, 2015, https://doi.org/10.1007/s10825-014-0636-2
- High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration vol.2014, 2014, https://doi.org/10.1155/2014/605894
- Stress analysis of perforated graphene nano-electro-mechanical (NEM) contact switches by 3D finite element simulation vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3483-9
- Three-Dimensional Finite Element Method Simulation of Perforated Graphene Nano-Electro-Mechanical (NEM) Switches vol.8, pp.8, 2017, https://doi.org/10.3390/mi8080236
- RF MEMS Perforated Shunt Switch Design on Hafnium Oxide Substrate for Low Actuation Voltage 2016, https://doi.org/10.18178/ijeee.4.6.500-504
- Performance analysis of series: shunt configuration based RF MEMS switch for satellite communication applications pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3907-1