
Original Article
International Journal of Fuzzy Logic and Intelligent Systems
Vol. 13, No. 3, September 2013, pp. 208-214
http://dx.doi.org/10.5391/IJFIS.2013.13.3.208

ISSN(Print) 1598-2645
ISSN(Online) 2093-744X

Fuzzy relation equations in pseudo
BL-algebras
Yong Chan Kim
Department of Mathematics, Gangneung-Wonju National University, Gangneung, 201-702, Korea

Abstract

Bandler and Kohout investigated the solvability of fuzzy relation equations with inf-implication
compositions in complete lattices. Perfilieva and Noskova investigated the solvability of
fuzzy relation equations with inf-implication compositions in BL-algebras. In this paper, we
investigate various solutions of fuzzy relation equations with inf-implication compositions in
pseudo BL-algebras.

Keywords: Pseudo BL-algebras, inf-implication compositions, fuzzy relation equations

Received: Dec. 18, 2012
Revised : Sep. 13, 2013
Accepted: Sep. 17, 2013

Correspondence to: Yong Chan Kim
(yck@gwnu.ac.kr)
©The Korean Institute of Intelligent Systems

cc© This is an Open Access article dis-
tributed under the terms of the Creative
Commons Attribution Non-Commercial Li-
cense (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-
commercial use, distribution, and reproduc-
tion in any medium, provided the original
work is properly cited.

1. Introduction

Sanchez [1] introduced the theory of fuzzy relation equations with various types of com-
positions: max-min, min-max, and min-α. Fuzzy relation equations with new types of
compositions (continuous t-norm and residuated lattice) have been developed [2-5]. In par-
ticular, Bandler and Kohout [6] investigated the solvability of fuzzy relation equations with
inf-implication compositions in complete lattices. Perfilieva and Noskova investigated the
solvability of fuzzy relation equations with inf-implication compositions in BL-algebras. In
contrast, noncommutative structures play an important role in metric spaces and algebraic struc-
tures (groups, rings, quantales, and pseudo BL-algebras) [7-15]. Georgescu and Iorgulescu
[12] introduced pseudo MV-algebras as the generalization of MV-algebras. Georgescu and
Leustean [11] introduced generalized residuated lattice as a noncommutative structure.
In this paper, we investigate various solutions of fuzzy relation equations with inf-implication
compositions Ai ⇒ R = Bi and Ai → R = Bi in pseudo BL-algebras.

2. Preliminaries

Definition 2.1. [11] A structure (L,∨,∧,�,→,⇒,>,⊥) is called apseudo BL-algebra if it
satisfies the following conditions:
(A1) (L,∨,∧,>,⊥) is bounded where > is the universal upper bound and ⊥ denotes the
universal lower bound;
(A2) (L,�,>) is a monoid;
(A3) it satisfies a residuation, i.e.,

a� b ≤ c iff a ≤ b→ c iff b ≤ a⇒ c.

(A4) a ∧ b = (a→ b)� a = a� (a⇒ b).
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(A5) (a→ b) ∨ (b→ a) = > and (a⇒ b) ∨ (b⇒ a) = >.
We denote a0 = a→ ⊥ and a∗ = a⇒ ⊥.
A pseudo BL-chain is a linear pseudo BL-algebra, i.e., a

pseudo BL-algebra such that its lattice order is total.
In this paper, we assume that (L,∧,∨,�,→,⇒,⊥,>) is a

pseudo BL-algebra.

Lemma 2.2. [11] For each x, y, z, xi, yi ∈ L, we have the
following properties:

(1) If y ≤ z, (x � y) ≤ (x � z), x → y ≤ x → z, and
z → x ≤ y → x for→∈ {→,⇒}.

(2) x� y ≤ x ∧ y ≤ x ∨ y.
(3) (x� y)→ z = x→ (y → z) and (x� y)⇒ z = y ⇒

(x⇒ z).

(4) x → (y ⇒ z) = y ⇒ (x → z) and x ⇒ (y → z) =

y → (x⇒ z).
(5) x� (x⇒ y) ≤ y and (x→ y)� x ≤ y.
(6) x � (y ∨ z) = (x � y) ∨ (x � z) and (x ∨ y) � z =

(x� z) ∨ (y � z).
(7) x→ y = > iff x ≤ y iff x⇒ y = >.

3. Fuzzy Relation Equations in Pseudo BL-
Algebras

Theorem 3.1. Let a = (a1, a2, ..., an) ∈ Ln and b ∈ L.
We define two equations with respect to an unknown x =

(x1, ..., xn) ∈ Ln as

n∧
j=1

(aj → xj) = b, (I)

n∧
j=1

(aj ⇒ xj) = b, (II).

Then, (1) (I) is solvable iff it has the least solution y =

(y1, ..., yn) ∈ Ln such that yj = b� aj , j = 1, ..., n.

(2) (II) is solvable iff it has the least solution x = (x1, ..., xn) ∈
Ln such that xj = aj � b, j = 1, ..., n.

(3) If (I) is solvable, then b ≥
∧n

j=1 a
0
j .

(4) If (II) is solvable, then b ≥
∧n

j=1 a
∗
j .

Proof. (1) (⇒) Let x = (x1, ..., xn) be a solution of (I). Since
b =

∧n
j=1(aj → xj) ≤ aj → xj , b � aj ≤ xj . Moreover,

b ≤
∧n

j=1(aj → b � aj) ≤
∧n

j=1(aj → xj) = b. Therefore,∧n
j=1(aj → b� aj) = b. Thus, y = (b� a1, ..., b� an) is the

least solution.
(⇐) It is trivial.

(3) Let x = (x1, ..., xn) denote a solution of (I). Then, b =∧n
j=1(aj → xj) ≥

∧n
j=1(aj → ⊥) =

∧n
j=1(aj)

0.

(2) and (4) are similarly proved as (1) and (3), respectively.

Theorem 3.2. Let L denote a pseudo BL-chain in equations (I)
and (II) of Theorem 3.1.

(1) If b < > and b =
∧n

j=1 a
∗
j with B = {ajk | 1 ≤ k ≤

m, b = (ajk)
∗}, then X = {xjk = (>, ...,

jk︷︸︸︷
⊥ , ...,>) | 1 ≤

k ≤ m} is a maximal solution of (II). Moreover, if x is a
solution of (II), there exists k ∈ {jk | 1 ≤ k ≤ m} such that

xjk = 0, j = k, xj ≥ aj � b, j 6= k

where there exists xjk ∈ X such that x ≤ xjk .

(2) If b < > and b =
∧n

j=1 a
0
j with B = {ajk | 1 ≤ k ≤

m, b = (ajk)
0}, then X = {xjk = (>, ...,

jk︷︸︸︷
⊥ , ...,>) | 1 ≤

k ≤ m} is a maximal solution of (I). Moreover, if x is a solution
of (I), there exists k ∈ {jk | 1 ≤ k ≤ m} such that

xjk = 0, j = k, xj ≥ b� aj , j 6= k

where there exists xjk ∈ X such that x ≤ xjk .

Proof. (1) (⇒) xjk = (>, ...,
jk︷︸︸︷
⊥ , ...,>) is a solution of (II)

because

n∧
j=1

(aj ⇒ xj) = ajk ⇒ ⊥ = a∗jk = b.

Let x ≥ xjk be a solution of (II). Then, x = (>, ...,
jk︷︸︸︷
xjk , ...,>)

with xjk ≥ ajk � b and

n∧
j=1

(aj ⇒ xj) = ajk ⇒ xjk = b.

Since b < 1, ajk 6≤ xjk . Since L is linear, ajk > xjk . Since
b = ajk ⇒ xjk = a∗jk , we have

xjk = ajk ∧ xjk = ajk � (ajk ⇒ xjk)

= ajk � b = ajk � (ajk ⇒ ⊥) = ⊥.

Thus, x = xjk . xjk = (>, ...,
jk︷︸︸︷
⊥ , ...,>) is a maximal solu-

tion of (II).
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Let x = (x1, ..., xn) be a solution of (II). Since
∧n

j=1(aj ⇒
xj) = b, by the linearity of L, there exists a family K = {jk |
ajk ∈ B, ajk ⇒ ⊥ = b, 1 ≤ k ≤ m} such that

n∧
j=1

(aj ⇒ xj) =

m∧
k=1

(ajk ⇒ xjk) = b

, because by linearity of L, ajk 6∈ B, (aj)∗ > b implies that∧
ajk
6∈B(aj ⇒ xj) ≥

∧
ajk
6∈B(aj ⇒ ⊥) > b.

For k ∈ K, since ak ⇒ ⊥ = ak ⇒ xk = b 6= > and L is
linear, ak > xk and ak � b = ak � (ak ⇒ xk) = ak � (ak ⇒

⊥) = ⊥ = ak ∧ xk = xk. Then, x = (x1, ...,

k︷︸︸︷
⊥ , ..., xn) ≤

(>, ...,
k︷︸︸︷
⊥ , ...,>).

(⇐) It is trivial.

(2) It is similarly proved as (1).

Example 3.3. Let K = {(x, y) ∈ R2 | x > 0} denote a set,
and we define an operation ⊗ : K ×K → K as follows:

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + y1).

Then, (K,⊗) is a group with e = (1, 0), (x, y)−1 = ( 1x ,−
y
x ).

We have a positive cone P = {(a, b) ∈ R2 | a = 1, b ≥
0 , or a > 1} because P ∩ P−1 = {(1, 0)}, P � P ⊂
P , (a, b)−1 � P � (a, b) = P , and P ∪ P−1 = K. For
(x1, y1), (x2, y2) ∈ K, we define

(x1, y1) ≤ (x2, y2) ⇔ (x1, y1)
−1 � (x2, y2) ∈ P,

(x2, y2)� (x1, y1)
−1 ∈ P

⇔ x1 < x2 or x1 = x2, y1 ≤ y2.

Then, (K,≤ ⊗) is a lattice-group with totally order ≤. (ref.
[1])

The structure (L,�,⇒,→, ( 12 , 1), (1, 0)) is a Pseudo BL-
chain where ⊥ = ( 12 , 1) is the least element and > = (1, 0) is
the greatest element from the following statements:

(x1, y1)� (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ ( 12 , 1)

= (x1x2, x1y2 + y1) ∨ ( 12 , 1),

(x1, y1)⇒ (x2, y2) = ((x1, y1)
−1 ⊗ (x2, y2)) ∧ (1, 0)

= (x2

x1
, y2−y1

x1
) ∧ (1, 0),

(x1, y1)→ (x2, y2) = ((x2, y2)⊗ (x1, y1)
−1) ∧ (1, 0)

= (x2

x1
,−x2y1

x1
+ y2) ∧ (1, 0).

Furthermore, we have (x, y) = (x, y)∗◦ = (x, y)◦∗ from:

(x, y)∗ = (x, y)⇒ (
1

2
, 1) = (

1

2x
,
1− y
x

),

(x, y)∗◦ = (
1

2x
,
1− y
x

)→ (
1

2
, 1) = (x, y).

(1) An equation is defined as

(( 12 , 2)→ (x1, y1)) ∧ (( 23 ,
5
3 )→ (x2, y2))

∧(( 23 ,
5
3 )→ (x3, y3)) = (35 , 3).

Since ( 12 , 2)
0∧( 23 ,

5
3 )

0 = ( 34 ,−
1
4 ) > ( 35 , 3) by Theorem 3.1(3),

it is not solvable.

(2) An equation is defined as

(( 12 , 2)→ (x1, y1)) ∧ (( 23 ,
5
3 )→ (x2, y2))

∧(( 23 ,
5
3 )→ (x3, y3)) = (34 ,−

1
4 ).

Since ( 12 , 2)
0 ∧ ( 23 ,

5
3 )

0 = ( 34 ,−
1
4 ),

X = {x = ((x1, y1), (x2, y2),⊥)

or x = ((x1, y1),⊥, (x3, y3))

| (x1, y1), (x2, y2), (x3, y3) ≥ ⊥}

is a solution set of (I).

M = {(>,>,⊥), (>,⊥,>)} is a maximal solution family
of (I).

(3) An equation is defined as

(( 12 , 2)⇒ (x1, y1)) ∧ (( 23 ,
1
3 )⇒ (x2, y2))

∧(( 23 ,
5
3 )⇒ (x3, y3)) = (35 ,−1).

Since ( 12 , 2)
∗ ∧ ( 23 ,

1
3 )
∗ ∧ ( 23 ,

5
3 )
∗ = ( 34 ,−1) > ( 35 ,−1) by

Theorem 3.1(3), it is not solvable.

(4) An equation is defined as

(( 12 , 2)⇒ (x1, y1)) ∧ (( 23 ,
1
3 )⇒ (x2, y2))

∧(( 23 ,
5
3 )⇒ (x3, y3)) = (34 ,−1).

Since ( 12 , 2)
∗ ∧ ( 23 ,

1
3 )
∗ ∧ ( 23 ,

5
3 )
∗ = ( 34 ,−1), X = {x =

((x1, y1), (x2, y2),⊥) | (x1, y1), (x2, y2) ≥ ⊥} is a solution
family of (II). (>,>,⊥) is a maximal solution of (II).

Definition 3.4. Let L denote a pseudo BL-chain. L satisfies
the right conditional cancellation law if

> < a� x ≤ a� y ⇒ x ≤ y.
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L satisfies the left conditional cancellation law if

> < x� a ≤ y � a⇒ x ≤ y.

Theorem 3.5. Let L denote a pseudo BL-chain in two equa-
tions (I) and (II) of Theorem 3.1.

Then, (1) If L satisfies the right conditional cancellation
law b < > and b >

∧n
j=1 a

∗
j with B = {ajk | 1 ≤ k ≤

m, b > (ajk)
∗}, then X = {xjk = (>, ...,

jk︷ ︸︸ ︷
ajk � b, ...,>) |

1 ≤ k ≤ m} is a maximal solution family of (II). Moreover, if
x is a solution of (II), there exists a family K = {jk | ajk ∈
B, ajk ⇒ xjk = b, 1 ≤ k ≤ m} such that

xk = ak � b, k ∈ K, xj ≥ aj � b, j 6∈ K

where there exists xjk ∈ X such that x ≤ xjk .

(2) If L satisfies the left conditional cancellation law b < >
and b >

∧n
j=1 a

0
j with B = {ajk | 1 ≤ k ≤ m, b = (ajk)

0},

then X = {xjk = (>, ...,
jk︷ ︸︸ ︷

b� ajk , ...,>) | 1 ≤ k ≤ m} is a
maximal solution of (I). Moreover, if x is a solution of (I), there
exists k ∈ {jk | 1 ≤ k ≤ m} such that

xk = b� ak, j = k, xj ≥ b� aj , j 6= k

where there exists xjk ∈ X such that x ≤ xjk .

Proof. (1) (⇒) xjk = (>, ...,
jk︷ ︸︸ ︷

ajk � b, ...,>) is a solution of (II)
because∧n

j=1(aj ⇒ xj) = ajk ⇒ ajk � b
=

∨
{y | ajk � y ≤ ajk � b} =

∨
{y | y ≤ b} = b.

Let x ≥ xjk denote a solution of (II). Then, x = (>, ...,
jk︷︸︸︷
xjk , ...,>)

with xjk ≥ ajk � b and

n∧
j=1

(aj ⇒ xj) = ajk ⇒ xjk = b.

Since b < 1, ajk 6≤ xjk . Since L is linear, ajk > xjk . Thus,

xjk = ajk ∧ xjk = ajk � (ajk ⇒ xjk) = ajk � b.

Therefore, x = xjk . xjk = (>, ...,
jk︷ ︸︸ ︷

ajk � b, ...,>) is a maximal
solution of (II).

Let x = (x1, ..., xn) denote a solution of (II). Since

n∧
j=1

(aj ⇒ xj) = b,

by the linearity of L, there exists a family K = {jk | ajk ∈
B, ajk ⇒ xjk = b, 1 ≤ k ≤ m} such that

n∧
j=1

(aj ⇒ xj) =

m∧
k=1

(ajk ⇒ xjk) = b

because ajk 6∈ B, (aj)0 ≥ b implies that
∧

ajk
6∈B(aj ⇒ xj) ≥∧

ajk
6∈B(aj ⇒ ⊥) ≥ b.

For k ∈ K, since ak ⇒ xk = b 6= > and L is linear,
ak > xk and ak � b = ak � (ak ⇒ xk) = ak ∧ xk = xk. For
j 6∈ K, since aj ⇒ xj ≥ b, xj ≥ aj � b. Hence,

xk = ak � b, k ∈ K, xj ≥ aj � b, j 6∈ K

(⇐) It is trivial.

(2) It is similarly proved as (1).

Example 3.6. The structure (L,�,⇒,→, ( 12 , 1), (1, 0)) is de-
fined as that in Example 3.3. Then, L satisfies the right condi-
tional cancellation law because

⊥ < (a, b)� (x1, y1) ≤ (a, b)� (x2, y2)

(⇔)⊥ < (ax1, ay1 + b) ≤ (ax2, ay2 + b)

(⇒)ax1 = ax2, ay1 + b ≤ ay1 + b, or ax1 < ax2

(⇒)x1 = x2, y1 ≤ y1, or x1 < x2

(⇒)(x1, y1) ≤ (x2, y2).

Similarly, L satisfies the left conditional cancellation law.

(1) An equation is defined as

(( 12 , 2)⇒ (x1, y1)) ∧ (( 23 ,
1
3 )⇒ (x2, y2))

∧(( 23 ,
5
3 )⇒ (x3, y3)) = (34 ,−

1
4 ).

Since ( 12 , 2)
∗ ∧ ( 23 ,

1
3 )
∗ ∧ ( 23 ,

5
3 )
∗ = ( 34 ,−1) < ( 34 ,−

1
4 ), B =

{( 23 ,
5
3 ) | (

2
3 ,

5
3 )
∗ < ( 34 ,−

1
4 )} and x = (>,>, ( 12 ,

3
2 ) is a

maximal solution of (II) because ( 23 ,
5
3 )� ( 34 ,−

1
4 ) = (12 ,

3
2 ).

X = {x = ((x1, y1), (x2, y2),⊥) | (x1, y1), (x2, y2) ≥ ⊥}
is a solution set of (II).

(2) An equation is defined as

(( 12 , 2)⇒ (x1, y1)) ∧ (( 23 ,
7
3 )⇒ (x2, y2))

∧(( 23 ,
5
3 )⇒ (x3, y3)) = (34 ,−

1
4 ).
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Since ( 12 , 2)
∗ ∧ ( 23 ,

7
3 )
∗ ∧ ( 23 ,

5
3 )
∗ = ( 34 ,−2) < ( 34 ,−

1
4 ),

B = {(2
3
,
7

3
), (

2

3
,
5

3
) | (2

3
,
5

3
)∗ < (

3

4
,−1

4
)},

and
x1 = (>, (1

2
,
13

6
),>)

and
x2 = (>,>, (1

2
,
3

2
))

are maximal solutions of (II) because

(
2

3
,
7

3
)� (

3

4
,−1

4
) = (

1

2
,
13

6
), (

2

3
,
5

3
)� (

3

4
,−1

4
) = (

1

2
,
3

2
).

X = {x1 = ((x1, y1), (x2, y2), (
1

2
,
3

2
)),

x2 = ((x1, y1), (
1

2
,
13

6
), (x3, y3))

| (x1, y1) ≥ ⊥, (x2, y2) ≥ (
1

2
,
13

6
), (x3, y3) ≥ (

1

2
,
3

2
)}

is a solution set of (II).
(3) An equation is defined as

(( 12 , 2)→ (x1, y1)) ∧ (( 23 ,
5
3 )→ (x2, y2))

∧(( 23 ,
5
3 )→ (x3, y3)) = ( 34 ,−

1
4 ).

Since ( 12 , 2)
0 ∧ ( 23 ,

5
3 )

0 = ( 34 ,−
1
4 ),

X = {x = ((x1, y1), (x2, y2),⊥)

or x = ((x1, y1),⊥, (x3, y3))

| (x1, y1), (x2, y2), (x3, y3) ≥ ⊥}

is a solution set of (I).

Theorem 3.7. Let ai = (ai1, ai2, ..., ain) ∈ Ln and bi ∈ L.
We define two equations with respect to an unknown x =

(x1, ..., xn) ∈ Ln as

n∧
j=1

(aij → xj) = bi, i ∈ {1, ...,m} (III)

n∧
j=1

(aij ⇒ xj) = bi, i ∈ {1, ...,m} (IV).

Then, (1) (III) is solvable iff it has the least solution x =

(x1, ..., xn) ∈ Ln such that xj =
∨m

i=1(bi � aij), j = 1, ..., n.

(2) (IV) is solvable iff it has the least solution x = (x1, ..., xn) ∈
Ln such that xj =

∨m
i=1(aij � bi), j = 1, ..., n.

(3) If (III) is solvable, then bi ≥
∧n

j=1 a
0
ij .

(4) If (IV) is solvable, then bi ≥
∧n

j=1 a
∗
ij .

(5) If (III) (resp. (IV)) is solvable and x1, ...,xm is a solution
of each ith equation, i = 1, 2, ...,m, then x =

∧m
i=1 xi is a

solution of (III) (resp. (IV)). Moreover, if each solution xi of
the ith equation is maximal, any maximal solution x of (III)
(resp. (IV)) is x =

∧m
i=1 xi.

Proof. (1) (⇒) Let y = (y1, ..., yn) denote a solution of (III).
Since bi =

∧n
j=1(aij → yj) ≤ aij → yj , bi � aij ≤ yj . Then,∨m

i=1(bi � aij) ≤ yj .
Moreover,

bi =

n∧
j=1

(aij → bi � aij)

≤
n∧

j=1

(aij →
m∨
i=1

(bi � aij))

≤
n∧

j=1

(aij → yj) = bi.

Then,
∧n

j=1(aij →
∨m

i=1(bi � aij)) = bi, i ∈ {1, ...,m}.
Substitute xj =

∨m
i=1(bi � aij). Thus, (x1, ..., xn) is the least

solution.
(⇐) It is trivial.
(3)

bi =

n∧
j=1

(aij → xj)

≥
n∧

j=1

(aij → ⊥)

=

n∧
j=1

(aij)
0, i ∈ {1, ...,m}.

(2) and (4) are similarly proved as (1) and (3), respectively.
(5) Let xi = (xi1, ..., xin) denote a solution of the ith equa-

tion in (III) and x =
∧m

i=1 xi = (x1, ..., xn) with xj =∧m
i=1 xij . Then,

n∧
j=1

(aij → xj) ≤
n∧

j=1

(aij → xij) = bi.

Moreover,

n∧
j=1

(aij → xj) ≥
n∧

j=1

(aij → bi � aij) = bi.

Hence,
∧n

j=1(aij → xj) = bi. Therefore, x =
∧m

i=1 xi is a
solution of (III).

Moreover, if xi is a maximal solution of the ith equation
in (III), then x =

∧m
i=1 xi is a solution of (III). Let y =
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(y1, ..., yn) denote a solution of (III). Then, y ≤ xi for each
i = 1, ...m. Then, y ≤ x =

∧m
i=1 xi. Hence, x is a maximal

solution of (III).

Example 3.8. The structure (L,�,⇒,→, ( 12 , 1), (1, 0)) is de-
fined as that in Example 3.3.

(1) An equation is defined as

(( 23 , 2)⇒ (x1, y1)) ∧ (( 34 ,
1
3 )⇒ (x2, y2))

∧(( 23 ,
5
3 )⇒ (x3, y3)) = ( 56 ,−1).

X1 = {(( 59 ,
4
3 ), (x2, y2), (x3, y3)), ((x1, y1), (

5
8 ,−

5
12 ),

(x2, y2)), ((x1, y1), (x2, y2), (
5
9 , 1)) | (x1, y1) ≥ ( 59 ,

4
3 ),

(x2, y2) ≥ ( 58 ,−
5
12 ), (x3, y3) ≥ ( 59 , 1)} is a solution set. M1 =

{(( 59 ,
4
3 ),>,>), (>, (

5
8 ,−

5
12 ),>), (>,>, (

5
9 , 1))} is a maximal

solution set.
(2) An equation is defined as

(( 56 , 2)⇒ (x1, y1)) ∧ (( 23 ,
1
3 )⇒ (x2, y2))

∧(( 34 , 0)⇒ (x3, y3)) = ( 34 ,−1).

X2 = {(( 58 ,
7
6 ), (x2, y2), (x3, y3)),

((x1, y1), (x2, y2), (
9
16 ,−

3
4 ))

| (x1, y1) ≥ (
5

8
,
7

6
), (x2, y2) ≥ ⊥, (x3, y3) ≥ ( 9

16 ,−
3
4 )}

is a solution set.
M2 = {(( 58 ,

7
6 ),>,>) or (>,>, ( 9

16 ,−
3
4 ))} is a maximal

solution set.
X = {(( 58 ,

7
6 ), (

5
8 ,−

5
12 ), (x3, y3)), ((x1, y1), (

5
8 ,−

5
12 ),

( 9
16 ,−

3
4 )) | (x1, y1) ≥ ( 58 ,

7
6 ), (x3, y3) ≥ ( 9

16 ,−
3
4 ))} is a

solution set of (1) and (2).

X = {(( 58 ,
7
6 ), (

5
8 ,−

5
12 ),>), (>, (

5
8 ,−

5
12 ), (

9
16 ,−

3
4 ))

| (x1, y1) ≥ ( 58 ,
7
6 ), (x3, y3) ≥ ( 9

16 ,−
3
4 ))}

is a maximal solution set of (1) and (2).
(3) An equation is defined as

(( 23 , 2)→ (x1, y1)) ∧ (( 34 ,
1
3 )→ (x2, y2))

∧(( 23 ,
5
3 )→ (x3, y3)) = ( 56 ,−1).

X3 = {(( 59 ,
2
3 ), (x2, y2), (x3, y3)), ((x1, y1), (

5
8 ,−

13
18 ),

(x2, y2)), ((x1, y1), (x2, y2), (
5
9 ,

7
18 )) | (x1, y1) ≥ ( 59 ,

2
3 ),

(x2, y2) ≥ ( 58 ,−
13
18 ), (x3, y3) ≥ ( 59 ,

7
18 )} is a solution set.

M3 = {(( 59 ,
2
3 ),>,>), (>, (

5
8 ,−

13
18 ),>), (>,>, (

5
9 ,

7
18 ))} is

a maximal solution set.

(4) An equation is defined as

(( 56 , 2)→ (x1, y1)) ∧ (( 23 ,
1
3 )→ (x2, y2))

∧(( 34 , 0)→ (x3, y3)) = (34 ,−1).

X4 = {(( 58 ,
1
2 ), (x2, y2), (x3, y3)),

((x1, y1), (x2, y2), (
9
16 ,−1))

| (x1, y1) ≥ ( 58 ,
1
2 ), (x2, y2) ≥ ⊥, (x3, y3) ≥ ( 9

16 ,−1)}

is a solution set.

M4 = {(( 58 ,
1
2 ),>,>), (>,>, (

9
16 ,−1))} is a maximal so-

lution set.

X = {(( 58 ,
1
2 ), (

5
8 ,−

13
18 ), (x3, y3)), ((x1, y1), (

5
8 ,−

13
18 ),

( 9
16 ,−1)) | (x1, y1) ≥ ( 58 ,

1
2 ), (x3, y3) ≥ ( 9

16 ,−1))} is a solu-
tion set of (3) and (4).

X = {(( 58 ,
1
2 ), (

5
8 ,−

13
18 ),>) or (>, ( 58 ,−

13
18 ), (

9
16 ,−1))} is

a maximal solution set of (3) and (4).

4. Conclusion

Bandler and Kohout [6] investigated the solvability of fuzzy re-
lation equations with inf-implication compositions in complete
lattices. Perfilieva and Noskova investigated the solvability of
fuzzy relation equations with inf-implication compositions in
BL-algebras. In this paper, we investigated various solutions of
fuzzy relation equations with inf-implication compositions in
pseudo BL-algebras.

In the future, we will investigate various solutions of fuzzy re-
lation equations with sup-compositions in pseudo BL-algebras
and other algebraic structures.
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