DOI QR코드

DOI QR Code

Expression of Mycosporine-like Amino Acids Biosynthetic Genes in the Chlamydomonas sp. Exposed to Radiofrequency

Radiofrequency에 노출된 Chlamydomonas sp.의 mycosporine-like amino acids 생합성 유전자 발현

  • Hwang, Jinik (South Sea Environment Research Department, Korea Institute of Ocean Science & Technology) ;
  • Moh, Sang Hyun (Anti-aging Research Institute of BIO-FD&C Co.,Ltd.) ;
  • Chang, Man (Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology) ;
  • Lee, Gunsup (South Sea Environment Research Department, Korea Institute of Ocean Science & Technology) ;
  • Lee, Juyun (Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology) ;
  • Kim, Donggiun (Department of Biological Science, Silla University) ;
  • Lee, Taek-Kyun (South Sea Environment Research Department, Korea Institute of Ocean Science & Technology)
  • 황진익 (한국해양과학기술원 남해특성연구부) ;
  • 모상현 (바이오에프디엔씨 항노화연구소) ;
  • 장만 (한국해양과학기술원 해양생태계연구부) ;
  • 이건섭 (한국해양과학기술원 남해특성연구부) ;
  • 이주연 (한국해양과학기술원 해양생태계연구부) ;
  • 김동균 (신라대학교 생물과학과) ;
  • 이택견 (한국해양과학기술원 남해특성연구부)
  • Received : 2013.03.29
  • Accepted : 2013.08.07
  • Published : 2013.08.31

Abstract

Mycosporine-like amino acids (MAAs) are UV-absorbing substances, and diverse marine organisms have the evolved the capacity to diminished the direct and indirect damaging effects of environmental ultraviolet radiation by synthesis and accumulation of MAAs. In this study, we manufactured a radiofrequency (RF) generation device and applied to microalgal culture. $0.35{\pm}0.05$ mHz of RF was supplied to culture vessel for Chlamydomonas sp. and samples were harvested at the designated time intervals (1, 0.5, 1 and 2 hr). MAAs biosynthetic genes, dehydroquinate synthase homolog (DHQS-like) and nonribosomal peptide synthetase homolog (NRPS-like), were cloned from Chlamydomonas sp. and their gene expressions under the RF exposure were analyzed using qRT-PCR. DHQS-like and NRPS-like gene expressions of Chlamydomonas sp. exposed to RF were increased 1.46 and 1.19 fold at 1 hr, respectively. These results means that DHQS-like and NRPS-like genes can be good biomarker candidates for diagnosis of MAAs biosynthesis in the Chlamydomonas sp.

Mycosporine-like 아미노산(MAAs)은 UV 흡수물질이며, 다양한 해양생물들은 MAAs의 합성과 축적을 통하여 환경 자외선의 직 간접적인 영향을 감소시키는 기능을 진화시켜 왔다. 이 연구에서 우리는 radiofrequency(RF) 발생장치를 제작하였고, 이를 미세조류 배양에 적용하였다. $0.35{\pm}0.05$ mHz의 RF를 Chlamydomonas sp. 배양기에 공급하였고, 정해진 시간(0, 0.5, 1 및 2 시간)에 시료를 채취하였다. MAAs 생합성 관련 유전자인 dehydroquinate synthase homolog (DHQS-like)와 nonribosomal peptide synthetase homolog (NRPS-like) 유전자를 Chlamydomonas sp.로부터 클로닝하였고, RF 노출에 대한 유전자 발현을 qRT-PCR을 이용하여 분석하였다. 연구결과 RF에 노출된 Chlamydomonas sp.의 DHQS-like와 NRPS-like 유전자의 발현은 노출 1시간에 각각 1.46 배 및 1.19 배 증가하였다. 이러한 결과는 DHQS-like와 NRPS-like 유전자가 Chlaydomonas sp.의 MAAs 생합성을 진단할 수 있는 좋은 바이오마커 후보가 될 수 있음을 의미한다.

Keywords

References

  1. D-P. Hader, R. C. Worrest, H. D. Kumar and R. C. Smith. "Effects on aquatic ecosystems". J. Photochem. Photobiol. B: Biol. 46, 53-68, 1998. https://doi.org/10.1016/S1011-1344(98)00185-7
  2. S. P. Singh, M. Klisch, R. P. Sinha and D-P. Hader. "Genome mining of mycosporine-like amino acid (MAA) synthesizing and non synthesizing cyanobacteria: a bioinformatics study". Genomics, 95, 120-128, 2010. DOI: http://dx.doi.org/10.1016/j.ygeno.2009.10.002.
  3. S. Kumari, R. P. Rastogi, K. L. Singh, S. P. Singh and R.P. Sinha. "DNA damage: detection strategies", EXCLI J. 7, 44-62, 2008.
  4. T. Han, J-A. Kong, Y-S. Han, S-H. Kang and D-P. Hader. "UV-A/blue light-induced reactivation of spore germination in UV-B irradiated Ulva pertusa (Chlorophyta)". J. Phycol. 40, 315-322, 2004. DOI: http://dx.doi.org/10.1111/j.1529-8817.2004.03069.x
  5. E. M. Middleton and A. H. Teramura. "The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage". Plant Physiol. 103, 741-752, 1993. https://doi.org/10.1104/pp.103.3.741
  6. S. P. Singh, S. Kumari, R. P. Rastogi, K. L. Singh and R. P. Sinha. "Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds". Ind. J. Exp. Biol. 46, 7-17, 2008.
  7. C. S. Cockell and J. Knowland. "Ultraviolet radiation screening compounds". Biol. Rev. Camb. Philos. Soc. 74, 311-345, 1999. DOI: http://dx.doi.org/10.1017/S0006323199005356
  8. J. M. Shick, W. C. Dunlap. "Mycosporine-like amino acids and related gadusols: Biosynthesis, Accumulation, and UV-Protective Functions in Aquatic Organisms". Annu. Rev. Physiol. 64, 223-262, 2002. DOI: http://dx.doi.org/10.1146/annurev.physiol.64.081501.155802
  9. A. Oren and N. Gunde-Cimerman. "Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?". FEMS Microbiol. Lett. 269, 1-10, 2007. DOI: http://dx.doi.org/10.1111/j.1574-6968.2007.00650.x
  10. D. Karentz, E. S. McEuen, M. C. Land and W. C. Dunlap. "Survey of mycosporine-like amino acid compounds in Antarctic marine organism: potential protection from ultraviolet exposure". Mar Biol 108, 157-166, 1991. DOI: http://dx.doi.org/10.1007/BF01313484
  11. H. Nakamura, J. Kobayashi and Y. Hirata. "Separation of mycosporine like amino acids in marine organisms using reversed-phase high performance liquid chromatography". J. Chromatogr. 250, 113-118, 1982. https://doi.org/10.1016/S0021-9673(00)95219-1
  12. A. Oren. "Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria". Geomicrobiol. J. 14, 231-240. 1997. DOI: http://dx.doi.org/10.1080/01490459709378046
  13. I. Yakovleva, R. Bhagooli, A. Takemura and M. Hidaka. "Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine". Comp. Biochem. Physiol. B 139, 721-730, 2004. DOI: http://dx.doi.org/10.1016/j.cbpc.2004.08.016
  14. F. de la Coba, J. Aguilera, F. L. Figueroa, M. V. de Gáalvez and E. Herrera. "Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen". J. Appl. Phycol. 21, 161-169, 2009. DOI: http://dx.doi.org/10.1007/s10811-008-9345-1
  15. E. P. Balskus and C. T. Walsh. "The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria". Science. 329, 1653-1656, 2010. DOI: http://dx.doi.org/10.1126/science.1193637
  16. J. I. Carreto and M. O. Carignan. "Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar. Drugs. 9, 387-446, 2011. DOI: http://dx.doi.org/10.3390/md9030387
  17. S. Velizarov, P. Raskmark and S. Kwee. "The effects of radiofrequency fields on cell proliferation are non-thermal". Bioelectrochem. Bioenerg. 48, 177-80, 1999. DOI: http://dx.doi.org/10.1016/S0302-4598(98)00238-4,
  18. R. Paulraj and J. Behari. "The effect of low level continuous 2.45 GHz waves on enzymes of developing rat brain". Electro. Magnetobiol. 21, 221-231, 2002. DOI: http://dx.doi.org/10.1081/JBC-120015993
  19. M. Barteri, A. Pala and S. Rotella. "Structural and kinetic effects of mobile phonemicrowaves on acetylcholinesterase activity". BiophysChemist. 113, 245-253, 2004. DOI: http://dx.doi.org/10.1016/j.bpc.2004.09.010
  20. S. Lee, D. Johnson, K. Dunbar, H. Dong, X. Ge and Y. C. Kim. "2.45 GHz radiofrequency fields alter gene expression in cultured human cells". FEBS Lett. 579, 4829-4836, 2005. DOI: http://dx.doi.org/10.1016/j.febslet.2005.07.063,
  21. F. Apollonio, G. D'Inzeo and L. Tarricone. "Modelling of neuronal cells exposed to RF fields from mobile telecommunication equipment". Bioelectrochem. Bioenerg. 47, 199-205, 1998. DOI: http://dx.doi.org/10.1016/S0302-4598(98)00189-5,
  22. A. N. Goltsov. "Electromagnetic-field-induced oscillations of the lipid domain structures in the mixed membranes". Bioelectrochem. Bioenerg. 48, 311-316, 1999. DOI: http://dx.doi.org/10.1016/S0302-4598(99)00040-9,
  23. M. Zmyslony, P. Politanski, E. Rajkowska, W. Szymczak and J. Jajte, "Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions". Bioelectromagnetics. 25, 324-328, 2004. DOI: http://dx.doi.org/10.1002/bem.10191
  24. S. Kwee, P. Raskmark and S. Velizarov. "Changes in cellular proteins due to environmental non-ionizing radiation. I. Heat-shock proteins". Electro- Magnetobiol. 20, 141-152, 2001. DOI: http://dx.doi.org/10.1081/JBC-100104139
  25. D. M. Leme and M. A. Marin-Morales. "Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water-.a case study". Mutat. Res. 650, 80-86, 2008. DOI: http://dx.doi.org/10.1016/j.mrgentox.2007.10.006,
  26. M. Tkalec, K. Malaric and B. Pevalek-Kozlina. "Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L.". Sci. Total Environ. 388, 78-89, 2007. DOI: http://dx.doi.org/10.1016/j.scitotenv.2007.07.052
  27. J. H. Jung, T. K. Ryu and T-K. Lee. "Application on multi-biomarker assessment in environmental health status monitoring of coastal system". Ocean Polar Resear. 30(1), 109-117, 2008. DOI: http://dx.doi.org/10.4217/OPR.2008.30.1.109
  28. T. K. Ryu, G. Lee, Y. Rhee, H-S. Park, M. Chang, S. Lee, J. Lee, T-K. Lee. "Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction". Ecotoxicol Environ Safe 84, 18-24, 2012. DOI: http://dx.doi.org/10.1016/j.ecoenv.2012.06.018