DOI QR코드

DOI QR Code

BETTI NUMBERS OF GAUSSIAN FIELDS

  • Park, Changbom (School of Physics, Korea Institute for Advanced Study) ;
  • Pranav, Pratyush (Kapteyn Astron. Inst., Univ. of Groningen) ;
  • Chingangbam, Pravabati (Indian Institute of Astrophysics) ;
  • Van De Weygaert, Rien (Kapteyn Astron. Inst., Univ. of Groningen) ;
  • Jones, Bernard (Kapteyn Astron. Inst., Univ. of Groningen) ;
  • Vegter, Gert (Johann Bernoulli Inst. for Mathematics and Computer Science, Univ. of Groningen) ;
  • Kim, Inkang (School of Mathematics, Korea Institute for Advanced Study) ;
  • Hidding, Johan (Kapteyn Astron. Inst., Univ. of Groningen) ;
  • Hellwing, Wojciech A. (Institute of Computational Cosmology, Department of Physics, Durham University)
  • Received : 2013.04.01
  • Accepted : 2013.05.18
  • Published : 2013.06.30

Abstract

We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers are topological invariants of figures that can be used to distinguish topological spaces. In the case of the excursion sets of a three-dimensional field there are three possibly non-zero Betti numbers; ${\beta}_0$ is the number of connected regions, ${\beta}_1$ is the number of circular holes (i.e., complement of solid tori), and ${\beta}_2$ is the number of three-dimensional voids (i.e., complement of three-dimensional excursion regions). Their sum with alternating signs is the genus of the surface of excursion regions. It is found that each Betti number has a dominant contribution to the genus in a specific threshold range. ${\beta}_0$ dominates the high-threshold part of the genus curve measuring the abundance of high density regions (clusters). ${\beta}_1$ dominates the genus near the median thresholds which measures the topology of negatively curved iso-density surfaces, and ${\beta}_2$ corresponds to the low-threshold part measuring the void abundance. We average the Betti number curves (the Betti numbers as a function of the threshold level) over many realizations of Gaussian fields and find that both the amplitude and shape of the Betti number curves depend on the slope of the power spectrum n in such a way that their shape becomes broader and their amplitude drops less steeply than the genus as n decreases. This behaviour contrasts with the fact that the shape of the genus curve is fixed for all Gaussian fields regardless of the power spectrum. Even though the Gaussian Betti number curves should be calculated for each given power spectrum, we propose to use the Betti numbers for better specification of the topology of large scale structures in the universe.

Keywords

References

  1. Canavezes, A., et al. 1998, The Topology of the IRAS Point Source Catalogue Redshift Survey, MNRAS, 297, 777 https://doi.org/10.1046/j.1365-8711.1998.01526.x
  2. Canavezes, A., & Efstathiou, G. 2004, TheTopology of the 2-Degree Field Galaxy Redshift Survey, Ap & SS, 290, 215 https://doi.org/10.1023/B:ASTR.0000022177.62525.37
  3. Choi, Y.-Y., Park, C., Kim, J., Gott, J. R., Weinberg, D. H., Vogeley, M. S., & Kim, S. S. 2010, Galaxy ClusteringTopologyin the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models, ApJS, 190, 181 https://doi.org/10.1088/0067-0049/190/1/181
  4. Doroshkevich, A. G. 1970, Spatial Structure of Perturbations and Origin of Galactic Rotation in Fluctuation Theory, Astrophysika, 6, 320
  5. Dunkley, J., Komatsu, E., Nolta, M.R., Spergel, D.N., Larson, D., Hinshaw, G., Page, L., Bennett, C.L., et al. 2009, Five-Year Wilkinson Microwave Anisotropy Probe Observations: Likelihoods and Parameters from the WMAP Data, ApJS, 180, 306 https://doi.org/10.1088/0067-0049/180/2/306
  6. Gott, J. R., Choi, Y.-Y., Park, C., & Kim, J. 2009, Three-Dimensional Genus Topology of Luminous Red Galaxies, ApJ, 695, L45 https://doi.org/10.1088/0004-637X/695/1/L45
  7. Gott, J. R., Dickinson, M., & Melott, A. L. 1986, The Sponge-Like Topology of Large-Scale Structure in the Universe, ApJ, 306, 341 https://doi.org/10.1086/164347
  8. Gott, J. R., et al. 1989, The Topology of Large-Scale Structure. III -Analysis of Observations, ApJ, 340, 625 https://doi.org/10.1086/167425
  9. Gott, J. R., Park, C., Juszkiewicz, R., Bies, W., Bennett, D., Bouchet, F., & Stebbins, A. 1990, Topology of Microwave Background Fluctuations -Theory, ApJ, 352, 1 https://doi.org/10.1086/168511
  10. Hamilton, A. J. S., Gott, J. R., & Weinberg, D. W. 1986, The Topology of the Large-Scale Structure of the Universe, ApJ, 309, 1 https://doi.org/10.1086/164571
  11. Hikage, C., Suto, Y., Kayo, I., Taruya, A., Matsubara, T., Vogeley, M. S., Hoyle, F., Gott, J. R., & Brinkmann, J. 2002, Three-Dimensional Genus Statistics of Galaxies in the SDSS Early Data Release, PASJ, 54, 707 https://doi.org/10.1093/pasj/54.5.707
  12. Hikage, C., Schmalzing, J., Buchert, T., Suto, Y., Kayo,I.,Taruya,A.,Vogeley, M.S., Hoyle, F., Gott, J. R., & Brinkmann, J. 2003, Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets, PASJ, 55, 911 https://doi.org/10.1093/pasj/55.5.911
  13. James, J. B., Colless, M., Lewis, G. F., & Peacock, J. A. 2009, Topology of Non-Linear Structure in the 2dF Galaxy Redshift Survey, MNRAS, 394, 454 https://doi.org/10.1111/j.1365-2966.2008.14358.x
  14. Moore, B., et al. 1992, The Topology of the QDOT IRAS Redshift Survey, MNRAS, 256, 477 https://doi.org/10.1093/mnras/256.3.477
  15. Munkres, J. R. 1993, Elements of Algebraic Topology (Boulder: Westview Press)
  16. Park, C., Choi,Y.-Y., Vogeley, M.S.,Gott, J.R., Kim, J., Hikage, C., Matsubara,T., Park, M.G., Suto,Y., & Weinberg, D. H. 2005, Topology Analysis of the Sloan Digital Sky Survey. I. Scale and Luminosity Dependence, ApJ, 633, 11 https://doi.org/10.1086/452625
  17. Park,C.,Colley,W.N.,Gott,J.R.,Ratra,B.,Spergel, D. N., & Sugiyama, N. 1998, Cosmic Microwave Background Anisotropy Correlation Function and Topology from Simulated Maps for MAP, ApJ, 506, 473 https://doi.org/10.1086/306259
  18. Park, C., Gott, J. R., & Choi, Y. J. 2001, Topology of the Galaxy Distribution in the Hubble Deep Fields, ApJ, 553, 33 https://doi.org/10.1086/320640
  19. Park, C., Gott, J. R., & da Costa, L. N. 1992, Large-ScaleStructurein theSouthernSkyRedshiftSurvey, ApJ, 392, L51 https://doi.org/10.1086/186423
  20. Park, C., & Kim, Y.-R. 2010, Large-Scale Structure of the Universe as a Cosmic Standard Ruler, ApJ, 715, L185 https://doi.org/10.1088/2041-8205/715/2/L185
  21. Park,C., Kim, J., & Gott, J.R. 2005, Effects of Gravi-tational Evolution, Biasing, and Red shift Space Distortion on Topology, ApJ, 633, 1 https://doi.org/10.1086/452621
  22. Protogeros, Z. A. M., & Weinberg, D. H. 1997, The Topology of Large-Scale Structure in the 1.2 Jy IRAS Redshift Survey, ApJ, 489, 457 https://doi.org/10.1086/304803
  23. Rhoads, J. E., Gott, J. R., & Postman, M. 1994, The Genus Curve of the Abell Clusters, ApJ, 421, 1 https://doi.org/10.1086/173619
  24. Sousbie, T. 2011, The Persistent Cosmic Web and Its Filamentary Structure -I. Theory and Implementation, MNRAS, 414, 350 https://doi.org/10.1111/j.1365-2966.2011.18394.x
  25. Sousbie, T., Pichon, C., & Kawahara, H. 2011, The Persistent Cosmic Web and Its Filamentary Structure -II. Illustrations, MNRAS, 414, 384 https://doi.org/10.1111/j.1365-2966.2011.18395.x
  26. van de Weygaert, R., Platen, E., Vegter, G., Eldering, B., & Kruithof, N., 2010, International Symposium on Voronoi Diagramsin Science and Engineering, 0, 224
  27. van de Weygaert, R., et al. 2011, Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web, Transactions on Computational Science, XIV, 60
  28. Vogeley, M. S., Park, C., Geller, M. J., Huchra, J. P., & Gott, J. R. 1994, Topological Analysis of the Cf A Redshift Survey, ApJ, 420, 525 https://doi.org/10.1086/173583
  29. Weinberg, D. H. 1988, Contour -A Topological Analysis Program, PASP, 100, 1373 https://doi.org/10.1086/132337
  30. Weinberg, D.H., Gott, J.R., & Melott, A. L. 1987, The Topology of Large-Scale Structure. I -Topology and the Random Phase Hypothesis, ApJ, 321, 2 https://doi.org/10.1086/165612

Cited by

  1. SYSTEMATIC EFFECTS ON THE GENUS TOPOLOGY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE vol.212, pp.2, 2014, https://doi.org/10.1088/0067-0049/212/2/22
  2. On Minkowski Functionals of CMB polarization vol.771, 2017, https://doi.org/10.1016/j.physletb.2017.05.030
  3. TOPOLOGY OF LUMINOUS RED GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY vol.209, pp.2, 2013, https://doi.org/10.1088/0067-0049/209/2/19
  4. A TOPOLOGICAL ANALYSIS OF LARGE-SCALE STRUCTURE, STUDIED USING THE CMASS SAMPLE OF SDSS-III vol.796, pp.2, 2014, https://doi.org/10.1088/0004-637X/796/2/86
  5. Large-scale structure topology in non-standard cosmologies: impact of dark sector physics vol.468, pp.1, 2017, https://doi.org/10.1093/mnras/stx375
  6. Topological pattern recognition for point cloud data vol.23, 2014, https://doi.org/10.1017/S0962492914000051
  7. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA vol.799, pp.1, 2015, https://doi.org/10.1088/0004-637X/799/1/95
  8. HORIZON RUN 3: TOPOLOGY AS A STANDARD RULER vol.799, pp.2, 2015, https://doi.org/10.1088/0004-637X/799/2/176
  9. The topology of the cosmic web in terms of persistent Betti numbers vol.465, pp.4, 2017, https://doi.org/10.1093/mnras/stw2862
  10. Tensor Minkowski Functionals: first application to the CMB vol.2017, pp.06, 2017, https://doi.org/10.1088/1475-7516/2017/06/023
  11. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION vol.814, pp.1, 2015, https://doi.org/10.1088/0004-637X/814/1/6
  12. Topological data analysis and diagnostics of compressible magnetohydrodynamic turbulence vol.84, pp.04, 2018, https://doi.org/10.1017/S0022377818000752
  13. Minkowski Tensors in Two Dimensions: Probing the Morphology and Isotropy of the Matter and Galaxy Density Fields vol.858, pp.2, 2018, https://doi.org/10.3847/1538-4357/aabb53
  14. Replacing dark energy by silent virialisation vol.610, pp.1432-0746, 2018, https://doi.org/10.1051/0004-6361/201731400
  15. Search for anomalous alignments of structures in Planck data using Minkowski Tensors vol.2019, pp.01, 2019, https://doi.org/10.1088/1475-7516/2019/01/009