DOI QR코드

DOI QR Code

Transesterification of Jatropha Oil over Ceria-Impregnated ZSM-5 for the Production of Bio-Diesel

  • Received : 2013.06.06
  • Accepted : 2013.07.25
  • Published : 2013.10.20

Abstract

In this study transesterification of Triglycerides (TG) from Jatropha curcas oil (JCO) with methanol for production of biodiesel was investigated over cerium impregnated ZSM-5 catalysts. NaZSM-5 was synthesized in an alkaline medium and impregnated with cerium oxide by wet method using cerium nitrate as a source for cerium. They were characterized by X-ray diffraction (XRD), Thermogravimeteric analysis (TGA), $CO_2$-temperature programmed desorption, and $N_2$ adsorption/desorption analysis. XRD analysis showed decrease in intensity of the patterns with the increase in the ceria loading but crystallization of ceria to larger size is an evident for 10 and 15% loading. The optimal yield of transesterification process was found to be 90% under the following conditions: oil to methanol molar ratio: 1:12; temperature: $60^{\circ}C$; time: 1 h; catalyst: 5 wt %. Here the yield of fatty acid methyl ester (FAME) was calculated through $^1H$ NMR analysis. The investigation on catalyst loading, temperature, time and reusability illustrated that these ceria impregnated NaZSM-5's were found to be selective, recyclable and could yield biodiesel at low temperature with low methanol to oil ratio due to the presence of both Lewis and Bronsted basicity. Hence, from the above study it is concluded that ceria impregnated ZSM-5 could be recognized as a potential catalysts for biodiesel production in industrial processes.

Keywords

References

  1. Lee, D. W.; Park, Y. M.; Lee, K. Y. Catal. Surv. Asia. 2009, 13, 63. https://doi.org/10.1007/s10563-009-9068-6
  2. Xu, L.; Wang, Y.; Yang, X.; Hu, J.; Li, W.; Guo, Y. Green. Chem. 2009, 11, 314. https://doi.org/10.1039/b815279a
  3. Rattanaphra, D.; Harvey, A.; Srinophakun, P. Top. Catal. 2010, 53, 773. https://doi.org/10.1007/s11244-010-9463-2
  4. Lien, Y. S.; Hsieh, L. S.; Wu, J. C. S. Ind. Eng. Chem. Res. 2010, 49, 2118. https://doi.org/10.1021/ie901496h
  5. Yan, S.; Salley, S. O.; Simon, Ng. K. Y. Appl. Catal. A. 2009, 353, 203. https://doi.org/10.1016/j.apcata.2008.10.053
  6. Kawashima, A.; Matsubara, K.; Honda, K. Bioresour. Technol. 2008, 99, 3439. https://doi.org/10.1016/j.biortech.2007.08.009
  7. Suppes, G. J.; Dasari, M. A.; Doskocil, E. J.; Mankidy, P. J.; Goff, M. J. Appl. Catal. A. Gen. 2004, 257, 213. https://doi.org/10.1016/j.apcata.2003.07.010
  8. Yang, Z.; Xie, W. Fuel. Proces. Technol. 2007, 88, 631. https://doi.org/10.1016/j.fuproc.2007.02.006
  9. Liu, X.; Piao, X.; Wang, Y.; Zhu, S.; He, H. Fuel. 2008, 87, 1076. https://doi.org/10.1016/j.fuel.2007.05.059
  10. Lopez, D. E.; Goodwin, J. G.; Bruce, D. A. J. Catal. 2007, 245, 381. https://doi.org/10.1016/j.jcat.2006.10.027
  11. Trakarnpruk, W.; Porntangjitlikit, S. Renew. Energy 2008, 33, 1558. https://doi.org/10.1016/j.renene.2007.08.003
  12. Di Serio, M.; Tesser, R.; Pengmei, L.; Santacesaria, E. Ener. Fuel. 2008, 22, 207. https://doi.org/10.1021/ef700250g
  13. Yang, Z.; Xie, W. Fuel. Proces. Technol. 2007, 88, 631. https://doi.org/10.1016/j.fuproc.2007.02.006
  14. Corma, A.; Hamid, S. B. A.; Iborra, S.; Velty, A. J. Catal. 2005, 234, 340. https://doi.org/10.1016/j.jcat.2005.06.023
  15. Hattori, H. Chem. Rev. 1995, 95, 537. https://doi.org/10.1021/cr00035a005
  16. Hathaway, P. E.; Davis, M. E. J. Catal. 1989, 116, 263. https://doi.org/10.1016/0021-9517(89)90091-2
  17. Barthomeuf, D. Catal. Rev. Sci. Eng. 1996, 38, 521. https://doi.org/10.1080/01614949608006465
  18. Philippou, A.; Rocha, J.; Anderson, M. W. Catal. Lett. 1999, 57, 151. https://doi.org/10.1023/A:1019099616405
  19. Philippou, A.; Anderson, M. W. J. Catal. 2000, 189, 395. https://doi.org/10.1006/jcat.1999.2705
  20. Sugunan, S.; Kumaree Seena, C. R. Ind. J. Chem. 1999, 38, 1123.
  21. Helwani, Z.; Othman, M.; Aziz, N.; Kim, J.; Fernando, W. Appl. Catalysis. A. Gen. 2009, 363, 1. https://doi.org/10.1016/j.apcata.2009.05.021
  22. Jongschaap, R. E. E.; Blesgraaf, R. A. R.; Bogaard, T. A.; Van Loo, E. N.; Savenije, H. H. G. Proc. Natl. Acad. Sci. 2009, 106, 35. https://doi.org/10.1073/pnas.0901856106
  23. Achten, W. M. J.; Verchot, L.; Franken, Y. J.; Mathijs, E.; Singh, V. P.; Aerts, R. Biomas. Bioener. 2008, 32, 1063. https://doi.org/10.1016/j.biombioe.2008.03.003
  24. Sudhakara, K.; Rajesh, M.; Premalathac, M. Ener. Procedia. 2012, 14, 1421. https://doi.org/10.1016/j.egypro.2011.12.1112
  25. Sharma, M. P. Renew. Sus. Ener. Rev. 2010, 14, 3140. https://doi.org/10.1016/j.rser.2010.07.047
  26. Endalew, A. K.; Kiros, Y.; Zanzi, R. Energy 2011, 36, 2693. https://doi.org/10.1016/j.energy.2011.02.010
  27. Knothe, G. J. Am. Oil. Chem. Soc. 2001, 78, 1025. https://doi.org/10.1007/s11746-001-0382-0
  28. Hardenberg, T. A. J.; Mertens, L.; Mesman, P.; Muller, H. C.; Nicolaides, C. P. Zeolites 1992, 12, 685. https://doi.org/10.1016/0144-2449(92)90116-7
  29. Sugi, Y.; Kubota, Y.; Komura, K.; Sugiyama, N.; Hayashi, M.; Kim, J. H.; Seo, G. Appl. Catal. A. Gen. 2006, 299, 157. https://doi.org/10.1016/j.apcata.2005.10.024
  30. Cannillab, C.; Bonuraa, G.; Rombic, E.; Arenaa, F.; Frusteri, F.; Appl. Catal. A. Gen. 2010, 382, 158. https://doi.org/10.1016/j.apcata.2010.04.031
  31. Yan, S.; Salley, S. O.; Ng, K. Y. S. Appl. Catal. A. Gen. 2009, 353, 203. https://doi.org/10.1016/j.apcata.2008.10.053
  32. Tamura, M.; Siddiki, S. M. A. H.; Shimizu, K. I. Green Chem. 2013, 15, 1641. https://doi.org/10.1039/c3gc40408k
  33. Yu, X.; Wen, Z.; Li, H.; Tu, S. T.; Yan, J. Fuel 2011, 90, 1868. https://doi.org/10.1016/j.fuel.2010.11.009
  34. Flavia, C. G.; Mattos, D.; Joina, A.; De Souza, S.; Ana, B.; Cotrim, A.; Julio, L.; Macedo, D.; Jose, A. D.; Silvia, C. L.; Ghesti, G. F. Appl. Catal. A. Gen. 2012, 7, 1.
  35. Bernhard, M. E.; Russbueldt, A.; Wolfgang, F.; Hoelderich. J. Catal. 2010, 271, 290. https://doi.org/10.1016/j.jcat.2010.02.005
  36. Vieira, S. S.; Magriotis, Z. M.; Santos, N. A. V.; Saczk, A. A.; Hori, C. E.; Arroyo, P. A.; Bioresour. Technol. 2013, 133, 248. https://doi.org/10.1016/j.biortech.2013.01.107
  37. Leung, D. Y. C.; Guo, Y. Fuel. Proces. Technol. 2006, 87, 883. https://doi.org/10.1016/j.fuproc.2006.06.003
  38. Hayashi, H.; Kanoh, M.; Quan, C. J.; Inaba, H.; Wang, S.; Dokiya, M.; Tagawa, H. Solid State Ionics 2000, 132, 227. https://doi.org/10.1016/S0167-2738(00)00646-9
  39. Zgheib, N.; Putaux, J. L.; Thill, A.; D'Agosto, F.; Lansalot, M.; Bourgeat-Lami, E. Langmuir 2012, 28, 6163. https://doi.org/10.1021/la300494g

Cited by

  1. One-step synthesis of ethanol from glycerol in a gas phase packed bed reactor over hierarchical alkali-treated zeolite catalyst materials vol.22, pp.3, 2020, https://doi.org/10.1039/c9gc03262b
  2. The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil vol.11, pp.11, 2021, https://doi.org/10.3390/catal11111260