DOI QR코드

DOI QR Code

Optimization of Reaction Conditions for High Yield Synthesis of Carbon Nanotube Bundles by Low-Temperature Solvothermal Process and Study of their H2 Storage Capacity

  • Krishnamurthy, G. (Department of Studies in Chemistry, Bangalore University) ;
  • Agarwal, Sarika (Department of Studies in Chemistry, Bangalore University)
  • Received : 2013.06.03
  • Accepted : 2013.07.25
  • Published : 2013.10.20

Abstract

Synthesis of Carbon Nanotube bundles has been achieved by simple and economical solvothermal procedure at very low temperature of $180^{\circ}C$. The product yield obtained was about 70-75%. The optimization of reaction conditions for an efficient synthesis of CNTs has been presented. The CNTs are obtained by reduction of hexachlorobenzene in the presence of Na/Ni in cyclohexane. The X-ray diffraction, Fourier transform infrared and Raman spectral studies have inferred us the graphene structure of the products. The CNTs formed as the bundles were viewed on scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope. These are the multiwalled CNTs with outer diameter of 5-10 nm, the inner diameter 2-4 nm and cross sectional diameter up to 5 nm. Brunauer-Emmett-Teller (BET) based $N_2$ gas adsorption studies have been made to obtain BET surface area and $H_2$ storage capacity. Effect of the experimental variables such as reaction temperature, amount of catalyst and the amount of carbon source were investigated. It is found that they affect significantly on the product nature and yield.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Shim, M.; Javey, A.; Kam N. W. S.; Dai, H. J. J. Am. Chem. Soc. 2001, 123, 11512. https://doi.org/10.1021/ja0169670
  3. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. https://doi.org/10.1126/science.287.5453.622
  4. Collins, P. G.; Zettl, A.; Bando, H.; Smalley, R. E. Science 1997, 278, 100. https://doi.org/10.1126/science.278.5335.100
  5. Arenillas, A.; Zubizarreta, L.; Pis, J. J. Int. J. Hydrogen Energy 2009, 34, 4575. https://doi.org/10.1016/j.ijhydene.2008.07.112
  6. Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Science 1999, 284, 1340. https://doi.org/10.1126/science.284.5418.1340
  7. Kim, P.; Lieber, C. M. Science 1999, 286, 2148. https://doi.org/10.1126/science.286.5447.2148
  8. Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Science 1999, 283, 512. https://doi.org/10.1126/science.283.5401.512
  9. Peigney, A.; Coquay, P.; Flahaut, E.; Vandenberghe, R. E.; De Grave, E.; Laurent, C. J. Phys. Chem. B 2001, 105, 9699. https://doi.org/10.1021/jp004586n
  10. Kasumov, Y. A.; Shailos, A.; Khodos1, I. I.; Volkov, V. T.; Levashov, V. I.; Matveev, V. N.; Gueron, S.; Kobylko, M.; Kociak, M.; Bouchiat, H.; Agache, V.; Rollier, A. S.; Uchaillot, L.; Bonnot, A. M.; Kasumov, A. Y. Appl. Phys. A 2007, 88, 687. https://doi.org/10.1007/s00339-007-4028-3
  11. Bethune, D. S.; Kiang, C. H.; deVries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605. https://doi.org/10.1038/363605a0
  12. Scott, C. D.; Arepalli, S.; Nikolaev, P.; Smalley, R. E. Appl. Phys. A 2001, 72, 573. https://doi.org/10.1007/s003390100761
  13. Guerrero, A.; Puerta, J.; Gomez, F.; Blanco, F. Phys. Scr. 2008, 131, 4007.
  14. Joseyacaman, M.; Mikyoshida, M.; Rendon, L.; Santiesteban, J. G. Appl. Phys. Lett. 1993, 62, 657. https://doi.org/10.1063/1.108857
  15. Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Minoru, S. K.; Kroto, H. W. J. Phys. Chem. Solids 1993, 54, 1841. https://doi.org/10.1016/0022-3697(93)90297-5
  16. Mahanandia, P.; Vishwakarma, P. N.; Nanda, K. K.; Prasad, V.; Baraic, K.; Mondal, A. K.; Sarangi, S.; Dey, G. K.; Subramanyam, S. V. Solid State Commun. 2008, 145, 143. https://doi.org/10.1016/j.ssc.2007.10.020
  17. Cmoreno, J. M.; Yoshimura, M. J. Am. Chem. Soc. 2001, 123, 741. https://doi.org/10.1021/ja003008h
  18. O'Loughlin, J. K.; Kiang, C. H.; Wallace, C. H.; Reynolds, T. K.; Rao, L.; Kaner, R. B. J. Phys. Chem. B 2001, 105, 1921. https://doi.org/10.1021/jp0037100
  19. Mack, J. J.; Tari, S.; Kaner, R. B. Inorg. Chem. 2006, 45, 4243. https://doi.org/10.1021/ic060232k
  20. Jiang, Y.; Wu, Y.; Zhang, S. Y.; Xu, C. Y.; Yu, W. C.; Xie, Y.; Qian, Y. T. J. Am. Chem. Soc. 2000, 122, 12383. https://doi.org/10.1021/ja002387b
  21. Wang, X. J.; Lu, J.; Xie,Y.; Du, G.; Guo, Q. X.; Zhang, S. Y. J. Phys. Chem. B 2002, 106, 933.
  22. Lee, C. Y.; Chiu, H. T.; Peng, C. W.; Yen, M. Y.; Cang, Y. H.; Liu, C. S. Adv. Mater. 2001, 13, 1105-1107. https://doi.org/10.1002/1521-4095(200107)13:14<1105::AID-ADMA1105>3.0.CO;2-#
  23. Liu, J.; Shao, M.; Chen, X.; Yu, W.; Liu, X.; Qian, Y. J. Am. Chem. Soc. 2003, 125, 8088. https://doi.org/10.1021/ja035763b
  24. Wang, W.; Kunwar, S.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. Nanotech. 2005, 16, 21. https://doi.org/10.1088/0957-4484/16/1/005
  25. Liu, J.; Shao, M.; Tang, Q.; Zhang, S.; Qian, Y. J. Phys. Chem. B 2003, 107, 6329. https://doi.org/10.1021/jp034881i
  26. Cheng, J.; Zhang, X.; Luo, Z.; Liu, F.; Ye, Y.; Yin, W.; Liu, W.; Han, Y. Mater. Chem. Phys. 2006, 95, 5. https://doi.org/10.1016/j.matchemphys.2005.04.043
  27. Costa, S.; Borowiak-Palen, E.; Kruszynska, M.; Bachmatiuk, A.; Kalenczuk, R. J. Mater Sci-Poland. 2008, 26, 433-441.
  28. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1930, 60, 309.
  29. Tsang, S. C.; Harris, P. J. F.; Green, M. L. H. Nature 1993, 362, 520. https://doi.org/10.1038/362520a0
  30. Zuttel, A.; Sudan, P.; Mauron, P.; Wenger, P. Applied Physics A 2004, 78, 941. https://doi.org/10.1007/s00339-003-2412-1

Cited by

  1. Two-Dimensional Polyphenylene Networks with Tunable Micropores for Hydrogen Storage vol.7, pp.22, 2019, https://doi.org/10.1021/acssuschemeng.9b03781
  2. A review: the utilization of mesoporous materials in wastewater treatment vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab52af
  3. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review vol.287, pp.p1, 2013, https://doi.org/10.1016/j.chemosphere.2021.131959