DOI QR코드

DOI QR Code

Size-controlled Chevrel Mo6S8 as Cathode Material for Mg Rechargeable Battery

  • Ryu, Anna (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Park, Min-Sik (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Cho, Woosuk (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Jeom-Soo (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Young-Jun (Advanced Batteries Research Center, Korea Electronics Technology Institute)
  • Received : 2013.07.08
  • Accepted : 2013.07.25
  • Published : 2013.10.20

Abstract

Nanoscale Chevrel $Mo_6S_8$ powders are synthesized by molten salt synthesis. Synthesized $Mo_6S_8$ powders have different mean particle sizes which are dependent on a ratio of salt to precursor. The particle sizes of $Mo_6S_8$ powders changes along with the ratio increase. $Mo_6S_8$ (6:1) demonstrates the best electrochemical characteristics among the synthesized $Mo_6S_8$ powders although the $Mo_6S_8$ (4:1) has the smallest particle size. $Mo_6S_8$ (6:1) shows a reversible capacity of 83.9 $mAhg^{-1}$, which is 27.5% and 33% improved value over $Mo_6S_8$ (2:1) and $Mo_6S_8$ (4:1) at a current density of 0.2C, respectively. The superior electrochemical properties of $Mo_6S_8$ (6:1) are attributed to the balanced particle size which provides proper contact area with electrolyte and the shortened $Mg^{2+}$ diffusion length. The $Mo_6S_8$ (4:1) has the smallest particle size but further reduction of particle size from $Mo_6S_8$ (6:1) is not advantageous.

Keywords

References

  1. Guo, Y.; Yang, J.; NuLi, Y.; Wang, J. Electrochem. Commun. 2010, 12, 1671. https://doi.org/10.1016/j.elecom.2010.08.015
  2. Ha, S.-Y.; Ryu, A.; Cho, W.; Woo, S.-G.; Kim, J.-H.; Lee, K. T.; Kim, J.-S.; Choi, N.-S. J. Electrochem. Sci. Tech. 2012, 3, 1. https://doi.org/10.5229/JECST.2012.3.1.1
  3. Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724. https://doi.org/10.1038/35037553
  4. Bruce, P. G.; Krok, F.; Nowinski, J.; Gibson, V. C.; Tavakkoli, K. J. Mater. Chem. 1991, 1, 705. https://doi.org/10.1039/jm9910100705
  5. Tao, Z.-L.; Xu, L.-N.; Gou, X.-L.; Chen, J.; Yuan, H.-T. Chem. Commun. 2004, 2080.
  6. Le, D. B.; Passerini, S.; Coustier, F.; Guo, J.; Soderstrom, T.; Owens, B. B.; Smyrl, W. H. Chem. Mater. 1998, 10, 682. https://doi.org/10.1021/cm9705101
  7. Jiao, L.-F.; Yuan, H.-T.; Si, Y.-C.; Wang, Y.-J.; Wang, Y.-M. Electrochem. Commun. 2006, 8, 1041. https://doi.org/10.1016/j.elecom.2006.03.043
  8. Imamura, D.; Miyayama, M.; Hibino, M.; Kudo, T. J. Electrochem. Soc. 2003, 150, A753. https://doi.org/10.1149/1.1571531
  9. Aurbach, D.; Suresh, G. S.; Levi, E.; Mitelman, A.; Mizrahi, O.; Chusid, O.; Brunelli, M. Adv. Mater. 2007, 19, 4260. https://doi.org/10.1002/adma.200701495
  10. Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I. Adv. Mater. 2003, 15, 627. https://doi.org/10.1002/adma.200304415
  11. Gofer, Y.; Turgeman, R.; Cohen, H.; Aurbach, D. Langmuir 2003, 19, 2344. https://doi.org/10.1021/la026642c
  12. Lancry, E.; Levi, E.; Gofer, Y.; Levi, M.; Salitra, G.; Aurbach, D. Chem. Mater. 2004, 16, 2832. https://doi.org/10.1021/cm034944+
  13. Lancry, E.; Levi, E.; Mitelman, A.; Malovany, S.; Aurbach, D. J. Solid State Chem. 2006, 179, 1879. https://doi.org/10.1016/j.jssc.2006.02.032
  14. Suresh, G. S.; Levi, M. D.; Aurbach, D. Electrochimica Acta 2008, 53, 3889. https://doi.org/10.1016/j.electacta.2007.11.052
  15. Amir, N.; Vestfrid, Y.; Chusid, O.; Gofer, Y.; Aurbach, D. J. Power Sources 2007, 174, 1234. https://doi.org/10.1016/j.jpowsour.2007.06.206
  16. Levi, E.; Gofer, Y.; Aurbach, D. Chem. Mater. 2010, 22, 860. https://doi.org/10.1021/cm9016497
  17. Kimura, T. In Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications; Sikalidis, C., Ed.; InTech: Rijeka, Croatia, 2011; p 75.
  18. Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. J. Electrochem. Soc. 2008, 155, A103. https://doi.org/10.1149/1.2806175
  19. Yvon, K.; Paoli, A.; Flukiger, R.; Chevrel, R. Acta Crystallographica Section B 1977, 33, 3066. https://doi.org/10.1107/S0567740877010279
  20. Chevrel, R.; Sergent, M.; Prigent, J. Mater. Res. Bull. 1974, 9, 1487. https://doi.org/10.1016/0025-5408(74)90095-6
  21. Levi, E.; Lancry, E.; Mitelman, A.; Aurbach, D.; Ceder, G.; Morgan, D.; Isnard, O. Chem. Mater. 2006, 18, 5492. https://doi.org/10.1021/cm061656f
  22. NuLi, Y.; Yang, J.; Wang, J.; Li, Y. J. Phys. Chem. C 2009, 113, 12594. https://doi.org/10.1021/jp903188b
  23. NuLi, Y.; Zheng, Y.; Wang, F.; Yang, J.; Minett, A. I.; Wang, J.; Chen, J. Electrochem. Commun. 2011, 13, 1143. https://doi.org/10.1016/j.elecom.2011.07.020
  24. NuLi, Y.; Zheng, Y.; Wang, Y.; Yang, J.; Wang, J. J. Mater. Chem. 2011, 21, 12437. https://doi.org/10.1039/c1jm10485c

Cited by

  1. (T = S, Se) as Electrodes for Advanced Energy Storage vol.13, pp.34, 2017, https://doi.org/10.1002/smll.201701441
  2. Status and challenge of Mg battery cathode vol.3, pp.None, 2013, https://doi.org/10.1557/mre.2016.2
  3. Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials vol.3, pp.10, 2016, https://doi.org/10.1002/advs.201600051
  4. The preparation and electrochemical performance of $ \text{Mo}_{6}\text{S}_{8}$ as cathode materials for magnesium ion batteries vol.34, pp.1, 2013, https://doi.org/10.1142/s0217979220400123
  5. Alloy Anode Materials for Rechargeable Mg Ion Batteries vol.10, pp.23, 2013, https://doi.org/10.1002/aenm.202000697
  6. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries vol.17, pp.3, 2013, https://doi.org/10.1002/smll.202004108