An Efficient Synthesis of Poly-Substituted Phenols and Pyridines from Morita-Baylis-Hillman Acetates and Diethyl Oxalacetate

Jin Yu, Ko Hoon Kim, Hyun Ju Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr

Received June 27, 2013, Accepted July 22, 2013

Abstract

Various phenol derivatives were synthesized in a one-pot reaction from MBH acetates and sodium diethyl oxalacetate via a $[4 \mathrm{C}+2 \mathrm{C}]$ cyclization protocol. In addition, some pyridine derivatives could also be synthesized using the same starting materials, by isolating the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction intermediate and performing the cyclization with $\mathrm{NH}_{4} \mathrm{OAc}$.

Key Words : Phenols, Pyridines, Morita-Baylis-Hillman acetates, Diethyl oxalacetate

Introduction

Morita-Baylis-Hillman (MBH) adducts ${ }^{1}$ have been used for the synthesis of various aromatic compounds including phenols ${ }^{2}$ and pyridines. ${ }^{3,4}$ Poly-substituted phenols and pyridines are important due to their abundance in nature and biologically active substances. ${ }^{5-7}$
MBH adducts of methyl vinyl ketone could be used as a four-carbon source to form phenol derivative in the reaction with a two-carbon unit such as ketone bearing an α-proton via the $[4 \mathrm{C}+2 \mathrm{C}]$ cyclization protocol. ${ }^{2 \mathrm{e}}$ As shown in Scheme 1 , a sequential $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction between MBH acetate $\mathbf{1 a}$ and sodium diethyl oxalacetate (2a) to form 3a, dehydrative cyclization to form an intermediate \mathbf{I}, and a final isomerization could produce phenol derivative 4a.

Results and Discussion

Thus, we examined the reaction of $\mathbf{1 a}$ and 2a in DMF at $120{ }^{\circ} \mathrm{C}$ for 1 h . To our delight, phenol 4a was obtained in good yield (75%) in a one-pot reaction. ${ }^{8}$ Encouraged by the successful results, various MBH acetates 1b-f were prepared and the syntheses of phenol derivatives $\mathbf{4 b}$-f were carried out under the same reaction conditions. The results are summarized in Table 1. The reactions of MBH acetates 1b-e and 2a produced 4b-e in good yields ($73-79 \%$, entries $2-5$). The reaction of $\mathbf{1 f}$, derived from ethyl vinyl ketone, gave polysubstituted phenol $\mathbf{4 f}$ in a similar yield (74%, entry 6).
During the reaction, we examined the preparation of an intermediate 3a, as shown in Scheme 2, in order to synthesize poly-substituted pyridines (vide infra). The reaction of

Table 1. Synthesis of poly-substituted phenols from 1 and 2a
Entry \quad MBH acetate $\mathbf{1}$

2

3

4

5

6

$4 f(74)$
${ }^{a}$ Conditions: Substrate $\mathbf{1}(0.5 \mathrm{mmol}), \mathbf{2 a}$ (1.1 equiv), DMF, $120^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Scheme 1

Scheme 2

Scheme 3

Table 2. Synthesis of poly-substituted pyridines

${ }^{a}$ Conditions: Substrate 1 (1.0 mmol), 2a (1.1 equiv), DMF, rt, 12 h . ${ }^{b}$ Conditions: Substrate 3 (0.4 mmol), NH4OAc (3.0 equiv), AcOH, reflux, 1 h. ${ }^{c}$ Conditions: Substrate 3 (0.4 mmol), NH4OAc (20.0 equiv), AcOH , reflux, 18 h .

1a and 2a (1.1 equiv) in DMF at room temperature for 12 h afforded 3a in moderate yield (53\%) along with 1:2 adduct 5a (17\%). ${ }^{9}$ The yield of $\mathbf{3 a}$ increased slightly by using an excess amount (3.0 equiv) of $\mathbf{2 a}$. When we used MBH bromide $\mathbf{1 g}$ instead of MBH acetate 1a, desired compound 3a was obtained in a similar yield (49\%) along with 1:2 adduct 6 (32%). ${ }^{10}$

With this compound 3a in our hand, the synthesis of pyridine $7 \mathbf{a}$ was examined in the presence of $\mathrm{NH}_{4} \mathrm{OAc}$ (3.0 equiv), as shown in Scheme 3. To our delight, poly-substituted pyridine $7 \mathbf{a}$ was formed in good yield (75\%) via the plausible intermediates II and III. ${ }^{11}$ For the synthesis of pyridine, MBH adduct served a three-carbon unit, and the pyridine ring was constructed by the $[3 \mathrm{C}+2 \mathrm{C}+1 \mathrm{~N}]$ cyclization protocol. ${ }^{3 \mathrm{c}}$
Encouraged by the results, 3d, 3f and $\mathbf{3 h}$ were prepared according to Scheme 2, and the syntheses of pyridine derivatives were carried out as summarized in Table 2. Pyridines 7b and 7c were obtained in good yields (60-70\%). 2-Hydroxypyridine $7 \mathbf{d}$ was synthesized under the similar reaction conditions in good yield (76\%) from ester derivative 3h, which was made from the MBH acetate of methyl acrylate 1h. For the synthesis of 7d, an excess amount (20 equiv) of $\mathrm{NH}_{4} \mathrm{OAc}$ and a long reaction time (18 h) were required. ${ }^{4 \mathrm{a}}$ In

Scheme 4

addition the synthesis of n-hexyl-substituted pyridine $7 \mathbf{e}$ was examined, as shown in Scheme 4. The reaction of $\mathbf{3 i}^{12}$ and $\mathrm{NH}_{4} \mathrm{OAc}$ afforded $7 \mathbf{e}(27 \%)$ along with a hexenyl-substituted pyridine $7 \mathbf{e}^{\prime}(40 \%)$ under the same reaction conditions. The pyridine $7 \mathrm{e}^{\prime}$ might be produced via the aerobic oxidation of an intermediate III-i and the following acid-catalyzed dehydration, as previously observed in a similar case. ${ }^{2 \mathrm{c}, 3 \mathrm{c}}$
As a last examination, we carried out the reaction of a DABCO salt of MBH bromide $\mathbf{1 g}$ and $\mathbf{2 a}$, as shown in Scheme 5. The reaction of $\mathbf{1 g}$ and DABCO in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature produced the corresponding DABCO salt quantitatively. ${ }^{13}$ To the reaction mixture, 2a was added and the reaction mixture was heated to reflux for $2 \mathrm{~h} .3,4-\mathrm{Di}-$ hydro- $2 H$-pyran derivative $\mathbf{8}$ was obtained in moderate yield (36\%), ${ }^{14}$ via an intramolecular conjugate addition of the enol intermediate, as already reported in a similar case. ${ }^{15}$ Polysubstituted phenol 9 was not formed at all.
In summary, various phenol derivatives were synthesized in a one-pot reaction from MBH acetates and sodium diethyl oxalacetate via a $[4 \mathrm{C}+2 \mathrm{C}]$ cyclization protocol. In addition, some pyridine derivatives could also be synthesized using the same starting materials, by isolating the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction intermediate and performing the cyclization with $\mathrm{NH}_{4} \mathrm{OAc}$.

Experimental Section

Typical Procedure for the Synthesis of 4a. A mixture of $\mathbf{1 a}(109 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{2 a}(116 \mathrm{mg}, 0.55 \mathrm{mmol})$ in DMF $(1.0 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ for 1 h . After the usual aqueous extractive workup and column chromatographic purification process (hexanes/EtOAc, 4:1), compound 4a was obtained as pale yellow oil, 123 mg (75%). Other compounds were synthesized similarly, and the spectroscopic data of 4af are as follows.
Compound 4a: 75\%; pale yellow oil; IR (film) 3364, 1716, 1609, 1303, 1133, $1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{Hx} 2), 3.98(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.06(\mathrm{~s}$, $1 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 13.94,14.10,35.81,61.37,61.97,115.63,122.60$, $126.42,128.57,128.68$, 130.01, 132.50, 133.25, 139.02, 156.90, 166.90, 168.96; ESIMS m/z 329 [M $\left.{ }^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$: C, $69.50 ; \mathrm{H}, 6.14$. Found: C, 69.76 ; H ,
6.03.

Compound 4b: 73\%; pale yellow oil; IR (film) 3372, $1718,1608,1305,1133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} \times 2), 2.30(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 4.30$ ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.06(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 4 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 13.95,14.11,20.98,35.48,61.36,61.93,115.68$, 122.66, 128.52, 129.32, 130.17, 132.45, 133.18, 135.80, 136.03, 156.89, 166.92, 168.91; ESIMS $m / z 343\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 4c: 79\%; colorless oil; IR (film) 3365, 1718, $1609,1303,1133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.33$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H} x 2), 3.94(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.33 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.10$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.95,14.13,35.16,61.43$, 62.06, 115.59, 122.76, 128.60, 129.58, 130.01, 132.15, 132.43, 133.43, 137.64, 156.65, 166.68, 168.92; ESIMS m/z $363\left[\mathrm{M}^{+}+\mathrm{H}\right], 365\left[\mathrm{M}^{+}+\mathrm{H}+2\right]$.

Compound 4d: 74\%; colorless oil; IR (film) 3359, 1719, $1608,1304,1133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.32$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} \times 2), 4.02(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.24$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.56(\mathrm{~m}, 7 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.94,14.11,35.46,61.40,62.01$, 115.66, 122.64, 126.96, 127.11, 127.28, 128.69, 129.06, 129.91, 132.53, 133.31, 138.14, 139.34, 140.81, 156.90, 166.87, 168.99; ESIMS $m / z 405\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 4e: 75%; pale yellow solid, mp $148-150{ }^{\circ} \mathrm{C}$; IR (KBr) 3370, 1715, 1608, 1305, $1133 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}$, $1 \mathrm{H}), 7.61-7.73(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.94$, 14.10, 36.02, 61.39, 61.96, 115.73, 122.77, 125.51, 126.07, 126.86, 127.17, 127.54, 127.59, 128.28, 129.77, 132.20, 132.61, 133.37, 133.52, 136.49, 156.95, 166.89, 168.83; ESIMS m/z $379\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 4f: 74\%; pale yellow oil; IR (film) 3436, $1715,1575,1314,1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.16-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 12.39,14.07,14.20,36.77,61.08$, 61.51, 119.66, 121.81, 126.54, 126.94, 128.46, 128.92, 130.91, 136.28, 138.20, 156.18, 165.50, 169.33; ESIMS m/z $343\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 70.16 ; \mathrm{H}, 6.48$. Found: C, 70.03; H, 6.74.

Typical Procedure for the Synthesis of 3a. A mixture of 1a ($218 \mathrm{mg}, 1.0 \mathrm{mmol}$) and 2a ($231 \mathrm{mg}, 1.1 \mathrm{mmol}$) in DMF $(1.5 \mathrm{~mL})$ was stirred at room temperature for 12 h . After the usual aqueous extractive workup and column chromatographic purification process (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 10: 1: 1$), compound 3a was obtained as colorless oil, $183 \mathrm{mg}(53 \%)$ along with $\mathbf{5 a}(43 \mathrm{mg}, 17 \%)$. Other compounds were synthesized similarly, and the spectroscopic data of 3a, 5a, 6a, 3d, 3f and $\mathbf{3 h}$ are as follows.
Compound 3a: 53\%; colorless oil; IR (film) 1754, 1731, $1666,1251 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.08(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.26 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 2.38 (s, 3H), 3.06 (dd, J $=14.1$ and $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=14.1$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-4.04(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.85,13.88$, 24.26, 25.79, 53.48, 61.62, 62.68, 128.73, 129.01, 129.06, 134.72, 138.20, 142.81, 159.56, 168.31, 187.87, 200.05; ESIMS m/z $347\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Compound 5a: 17\%; colorless oil; IR (film) 1730, 1668, $1239 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.06(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}), 3.01(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.38(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.59,13.92,25.53$, 29.44, 58.76, 61.51, 62.27, 128.58, 128.73, 129.41, 135.35, 138.31, 142.10, 159.71, 170.25, 186.56, 200.73; ESIMS m/z $505\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Compound 6a: 32%; pale yellow oil; IR (film) 1731, $1670,1627,1299,1102 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}$ x 2$), 3.65(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.58(\mathrm{~m}, 11 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.88,13.95,24.48,25.90,26.12$, $60.82,61.64,63.84,118.76,128.35,128.47,128.76,129.39$, 129.86, 129.92, 133.98, 134.79, 135.27, 138.84, 140.07, 145.57, 150.56, 162.96, 166.99, 197.98, 199.35; ESIMS m/z $527\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.
Compound 3d: 55\%; colorless oil; IR (film) 1740, 1731, $1665,1253,1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, $3.19(\mathrm{dd}, J=14.1$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=14.1$ and 6.9 $\mathrm{Hz}, 1 \mathrm{H}), 4.04-4.16(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.69(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.88,13.90,24.41,25.81,53.54$, 61.68, 62.72, 127.01, 127.37, 127.83, 128.91, 129.80, 133.60, $138.10,140.01,141.86,142.40,159.60,168.38,187.91$, 200.03; ESIMS $m / z 423\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 3f: 56\%; colorless oil; IR (film) 1731, 1668, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.14(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.83$ ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.14(\mathrm{dd}, J=14.4$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (dd, $J=14.4$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.11(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=$
7.2 Hz, 2H), 7.27-7.45 (m, 5H), 7.63 (s, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 8.63,13.85,13.88,24.48,30.61,53.45$, $61.59,62.65,128.70,128.85,129.02,134.87,137.76,141.34$, 159.60, 168.36, 187.94, 202.64; ESIMS m/z $361\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 3h: 57\%; colorless oil; IR (film) 1731, 1260 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=14.7$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30(\mathrm{dd}, J=14.7$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3 H), 4.01-4.12 (m, 2H), $4.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.28-7.46 (m, 5H), 7.80 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 13.82,13.88,25.22,52.16,53.51,61.71,62.74,128.46$, $128.63,128.78,129.09,134.78,142.19,159.66,167.95$, 168.31, 188.03; ESIMS $m / z 363\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 3i: 56\%; colorless oil; IR (film) 2932, 1755, 1731, 1667, 1259, $1210 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.40$ $(\mathrm{m}, 4 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.49(\mathrm{~m}, 2 \mathrm{H}), 2.22-$ $2.30(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 13.90 (2C), 13.93, 22.41, 23.93, 25.38, 28.41, 29.06, 31.54, 53.48, 61.57, 62.71, 137.60, 147.41, 159.81, 168.53, 188.34, 199.37; ESIMS m/z $341\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Typical Procedure for the Synthesis of 7a. A mixture of 3a ($138 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}(92 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{AcOH}(1.0 \mathrm{~mL})$ was heated to reflux for 1 h . After the usual aqueous extractive workup and column chromatographic purification process (hexanes/EtOAc, 8:1), compound 7a was obtained as pale yellow oil, 98 mg (75%). Other compounds were synthesized similarly, and the spectroscopic data of 7a-d are as follows.

Compound 7a: 75\%; pale yellow oil; IR (film) 1728, $1307,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.35(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}$, $2 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.98,14.00,22.71,38.48,61.73,62.05$, 123.32, 126.71, 128.57, 128.74, 135.71, 137.73, 138.52, 149.19, 160.96, 165.22, 166.83; ESIMS m/z 328 [$\left.\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 69.71; H, 6.47; N, 4.28. Found: C, 69.93; H, 6.62; N, 4.14.

Compound 7b: 70\%; pale yellow oil; IR (film) 1727, $1307,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.35(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~s}$, $2 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.51-7.59 (m, 4H), $7.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 13.98,14.01,22.76,38.13,61.76,62.07,123.35,126.93$, $127.26,127.41,128.72,128.98,135.61,136.77,138.55$, 139.66, 140.51, 149.24, 161.00, 165.22, 166.83; ESIMS m/z $404\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, $74.42 ; \mathrm{H}, 6.25$; N, 3.47. Found: C, 74.46; H, 6.57; N, 3.28.

Compound 7c: 60\%; colorless oil; IR (film) 1731, 1592, $1454,1301,1152,1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.85(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 2 \mathrm{H})$,
7.19-7.34 (m, 3H), $7.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 12.94,14.01,14.04,28.46,37.92,61.71,62.00,122.89$, $126.70,128.60,128.74,134.92,138.38,139.03,149.60$, 165.25, 165.43, 167.09; ESIMS m/z $342\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 7d: 76\%; pale yellow solid, mp 174-176 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 3392,1727,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.88(\mathrm{~s}$, $2 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-$ $7.34(\mathrm{~m}, 5 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 11.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 75 MHz) $\delta 13.91,13.95,35.87,61.74,63.11,111.92,126.63$, 128.64, 129.09, 135.71, 136.83, 137.20, 138.09, 161.31, 162.90, 164.63; ESIMS $m / z 330\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound 7e: 27\%; colorless oil; IR (film) 2930, 1728, $1304,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.89(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.53-1.64 (m, 2H), 2.60 (s, 3H), 2.66 (t, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.01$ (2C), 14.06, 22.13, 22.52, 29.05, 29.41, 31.54, 32.40, 61.78, 62.15, $123.38,137.72,137.87,148.27,160.10,165.36,166.70$; ESIMS m/z $322\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 67.26; H, 8.47; N, 4.36. Found: C, 67.51; H, 8.34; N, 4.19.

Compound 7e': 40\%; colorless oil; IR (film) 2929, 1728, 1306, 1260, $1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.93$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{dq}, J=6.9$ and 1.2 Hz , $2 \mathrm{H}), 2.62$ (s, 3H), 4.37 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ (q, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.27$ (dt, $J=15.9$ and $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$ (d, $J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.87$, $14.01,14.07,22.23,22.75,31.13,33.07,61.79,62.07,123.94$, 124.40, 133.68, 133.97, 137.55, 148.40, 158.26, 165.57, 166.69; ESIMS m/z $320\left[\mathrm{M}^{+}+\mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 67.69; H, 7.89; N, 4.39. Found: C, 67.74; H, 7.95; N, 4.14.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1B3000541). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the general reviews on MBH reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. (c) Singh, V.; Batra, S. Tetrahedron 2008, 64, 45114574. (d) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627645. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. (f) Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 87698780. (g) Shi, M.; Wang, F.-J.; Zhao, M.-X.; Wei, Y. The Chemistry of the Morita-Baylis-Hillman Reaction; RSC Publishing: Cambridge, UK, 2011.
2. For the synthesis of phenol derivatives from MBH adducts, see: (a) Kim, J. N.; Im, Y. J.; Kim, J. M. Tetrahedron Lett. 2002, 43, 6597-6600. (b) Kim, S. C.; Lee, H. S.; Lee, Y. J.; Kim, J. N. Tetrahedron Lett. 2006, 47, 5681-5685. (c) Park, D. Y.; Kim, S. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6315-6319. (d) Park, D. Y.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem.

Soc. 2008, 29, 701-704. (e) Kim, S. J.; Kim, S. H.; Kim, K. H.; Kim, J. N. Bull Korean Chem. Soc. 2008, 29, 876-878.
3. For the synthesis of pyridine derivatives from MBH adducts, see: (a) Park, D. Y.; Lee, M. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799-8803. (b) Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 439-442. (c) Kim, S. H.; Kim, K. H.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 19481951.
4. For the synthesis of pyridone derivatives from MBH adducts, see: (a) Kim, S. H.; Lee, S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 1815-1818. (b) Ravinder, M.; Sadhu, P. S.; Rao, V. J. Tetrahedron Lett. 2009, 50, 4229-4232.
5. For the selected synthesis of phenol derivatives and their synthetic applications, see: (a) Wang, M.; Fu, Z.; Feng, H.; Dong, Y.; Liu, J.; Liu, Q. Chem. Commun. 2010, 46, 9061-9063 and further references cited therein. (b) Riahi, A.; Shkoor, M.; Fatunsin, O.; Khera, R. A.; Fischer, C.; Langer, P. Org. Biomol. Chem. 2009, 7, 4248-4251. (c) Tang, J.-M.; Liu, T.-A.; Liu, R.-S. J. Org. Chem. 2008, 73, 8479-8483. (d) Liu, Y.; Lu, K.; Dai, M.; Wang, K.; Wu, W.; Chen, J.; Quan, J.; Yang, Z. Org. Lett. 2007, 9, 805-808. (e) Spencer, W. T.; Frontier, A. J. J. Org. Chem. 2012, 77, 7730-7736.
6. For the selected synthesis of pyridine derivatives and their synthetic applications, see: (a) Chun, Y. S.; Lee, J. H.; Kim, J. H.; Ko, Y. O.; Lee, S.-g. Org. Lett. 2011, 13, 6390-6393 and further references cited therein. (b) Sanchez, L. M.; Sathicq, A. G.; Jios, J. L.; Baronetti, G. T.; Thomas, H. J.; Romanelli, G. P. Tetrahedron Lett. 2011, 52, 4412-4416. (c) Shimada, K.; Takata, Y.; Osaki, Y.; Moro-oka, A.; Kogawa, H.; Sakuraba, M.; Aoyagi, S.; Takikawa, Y.; Ogawa, S. Tetrahedron Lett. 2009, 50, 6651-6653.
7. For the selected synthesis of pyridone derivatives and their synthetic applications, see: (a) Zhang, Z.; Fang, S.; Liu, Q.; Zhang, G. J. Org. Chem. 2012, 77, 7665-7670 and further references cited therein. (b) Pintiala, C.; Lawson, A. M.; Comesse, S.; Daich, A. Tetrahedron Lett. 2013, 54, 2853-2857. (c) Shao, Y.; Yao, W.; Liu, J.; Zhu, K.; Li, Y. Synthesis 2012, 44, 3301-3306. (d) Fossa, P.; Menozzi, G.; Dorigo, P.; Floreani, M.; Mosti, L. Bioorg. Med. Chem. 2003, 11, 4749-4759.
8. When we used diethyl oxalacetate instead of the sodium salt $\mathbf{2 a}$, the reaction of $\mathbf{1 a}\left(\mathrm{DMF}, \mathrm{K}_{2} \mathrm{CO}_{3}, 120^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ produced 4 a in a lower yield (62\%).
9. The result stated that the cyclization of $\mathbf{3 a}$ to phenol $\mathbf{4 a}$ occurred readily at $120{ }^{\circ} \mathrm{C}$ (Scheme 1 and Table 1); however, a second alkylation of 3a with 1a to form 1:2 adduct 5a proceeds slowly to some extent (17%) at room temperature.
10. For the competition between C - and O-alkylation, see: (a) Kotha, S.; Deb, A. C.; Kumar, R. V. Bioorg. Med. Chem. Lett. 2005, 15, 1039-1043. (b) De, S.; Kinthada, L. K.; Bisai, A. Synlett 2012, 23, 2785-2788. (c) Begue, J.-P.; Charpentier-Morize, M.; Nee, G. J. Chem. Soc., Chem. Commun. 1989, 83-84. (d) Kryshtal, G. V.; Zhdankina, G. M.; Zlotin, S. G. Mendeleev Commun. 2002, 12, 57-58.
11. A direct one-pot synthesis of pyridine 7a was examined. The reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ (3.0 equiv) in the presence of $\mathrm{NH}_{4} \mathrm{OAc}(4.0$ equiv) in AcOH under refluxing conditions for 3 h produced $7 \mathbf{a}$; however, the yield was quite low ($<10 \%$).
12. The compound $\mathbf{3 i}$ was prepared from $\mathbf{1 i}$ and $\mathbf{2 a}$ in $\mathrm{CH}_{3} \mathrm{CN}\left(50^{\circ} \mathrm{C}\right.$, 4 h) in 56% yield. We also examined the synthesis of phenol derivative from $\mathbf{1 i}$ and $\mathbf{2 a}$ (DMF, $120^{\circ} \mathrm{C}, 1 \mathrm{~h}$); however, a severe decomposition was observed.
13. For the introduction of a nucleophile at the secondary position of MBH adducts via a DABCO salt, see: (a) Kim, S. H.; Kim, S. H.; Lee, H. J.; Kim, J. N. Bull. Korean Chem. Soc. 2012, 33, 20792082. (b) Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023-9026. (c) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173-175. (d) Gong, J. H.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 789790. (e) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365-1371. (f) Cui, H.-L.; Feng, X.; Peng, J.;

Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int. Ed. 2009, 48, 5737-5740.
14. An appreciable amount of intractable side products was formed, and the corresponding cis-form of $\mathbf{8}$ was also formed in trace amount, but it was not isolated. The spectroscopic data of $\mathbf{8}$ was as follows: colorless oil; IR (film) 1744, 1712, 1637, 1368, $1285 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.79(\operatorname{app~q}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{q}, J=$
$7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=11.4$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H})$, 4.32-4.39 (m, 2H), 7.13-7.29 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 13.70,13.86,28.69,38.43,53.11,60.69,62.14,64.19$, $108.44,127.14,127.78,128.75,142.12,153.10,163.06,165.66$, 205.26; ESIMS m/z 347 [$\left.\mathrm{M}^{+}+\mathrm{H}\right]$.
15. For the similar synthesis of 3,4-dihydro-2H-pyrans from MBH adducts, see: Kim, J. N.; Kim, J. M.; Lee, K. Y.; Gowrisankar, S. Bull. Korean Chem. Soc. 2004, 25, 1733-1736.

