References
- Duraipandiyan, V.; Ignacimuthu, S. J. Ethnopharmacol. 2007, 112, 590-594. https://doi.org/10.1016/j.jep.2007.04.008
- Rajan, S.; Baburaj, D. S.; Sethuraman, M.; Parimala, S. Ethnobotany 2001, 6, 19-24.
- Ma, J.; Zhang, L. X.; Guan, Y. H. Chin. J. Ethnomed. Ethnopharm. 2004, 5, 178-180.
- Koyama, J.; Morita, I.; Tagahara, K.; Aqil, M. Phytochemistry 2001, 56, 849-851. https://doi.org/10.1016/S0031-9422(01)00025-5
- Koyama, J.; Nisino, Y.; Morita, I.; Kobayashi, N.; Osakai, T.; Tokuda, H. Bioorg. Med. Chem. Lett. 2008, 18, 4106-4109. https://doi.org/10.1016/j.bmcl.2008.05.109
- Sob, S. V. T.; Wabo, H. K.; Tchinda, A. T.; Tane, P.; Ngadjui, B. T.; Ye, Y. Biochem. Syst. Ecol. 2010, 38, 342-345. https://doi.org/10.1016/j.bse.2010.02.002
- Srivastava, C.; Siddiqui, I. R.; Singh. J. Indian Chem. Soc. 1992, 69, 111-115.
- Kuo, Y. H.; Lee, P. H.; Wein, Y. S. J. Nat. Prod. 2002, 65, 1165-1167. https://doi.org/10.1021/np020003k
- Hu, Q. F.; Zhou, B.; Gao, X. M.; Yang, L. Y.; Shu, L. D.; Shen, Y. Q.; Li, G. P.; Che, C. T.; Yang, G. Y. J. Nat. Prod. 2012, 75, 1909-1914. https://doi.org/10.1021/np300395m
- Oshimi, S.; Deguchi, J.; Hirasawa, Y.; Ekasari, W.; Widyawaruyanti, A.; Wahyuni, T. S.; Zaini, N. C.; Morita, H. J. Nat. Prod. 2009, 72, 1899-1901. https://doi.org/10.1021/np9004213
- Morita, H.; Oshimi, S.; Hirasawa, Y.; Koyama, K.; Honda, T.; Ekasari, W.; Indrayanto, G.; Zaini, N. C. Org. Lett. 2007, 9, 3691-3693. https://doi.org/10.1021/ol701623n
- Gao, X. M.; Shu, L. D.; Yang, L. Y.; Shen, Y. Q.; Cui, M. Z.; Li, X. M.; Hu, Q. F. Heterocycles 2013, 87, 125-131. https://doi.org/10.3987/COM-12-12580
- Geoffrey, A. L.; Roger, H. N. Phytochemistry 1986, 26, 295-300. https://doi.org/10.1016/S0031-9422(00)81531-9
- Alvarez, L.; Rios, M. Y.; Esquivel, C.; Chavez, M. I.; Delgado, G.; Aguilar, M. I.; Villarreal, M. L.; Navarro, V. J. Nat. Prod. 1998, 61, 767-770. https://doi.org/10.1021/np970586b
- Guchu S. M.; Yenesew, A.; Tsanuo, M. K.; Gikonyo, N. K.; Pickett, J. A.; Hooper, A. M.; Hassanali, A. Phytochemistry 2007, 68, 646-651. https://doi.org/10.1016/j.phytochem.2006.11.035
- Zhao, M.; Duan, J. A.; Che, C. T. Phytochemistry 2007, 68, 1471-1479. https://doi.org/10.1016/j.phytochem.2007.02.015
- Huang, X. Z.; Bai, X. S.; Liang, H.; Wang, C.; Li, W. J.; Guo, J. M.; Jiang, Z. Y. Bull. Korean Chem. Soc. 2013, 5, 1421-1424.
- Slade, D.; Ferreira, D.; Marais J. P. J. Phytochemistry 2005, 66, 2177-2215. https://doi.org/10.1016/j.phytochem.2005.02.002
- Gao, X. M.; Mu, H. X.; Li X .S.; Yang, G. Y.; Li, G. P.; Hu, Q. F. J. Chin. Chem. Soc. 2012, 59, 540-543. https://doi.org/10.1002/jccs.201100525
- Chen, Z. Y.; Tan, J. L.; Yang, G. Y.; Miao, M. M.; Chen, Y. K.; Li, T. F. Phytochem. Let. 2012, 5, 233-235. https://doi.org/10.1016/j.phytol.2012.01.001
- Zhao, W.; Zeng, X. Y.; Zhang, T.; Wang, L.; Yang, G. Y.; Chen, Y. K.; Hu, Q. F.; Miao, M. M. Phytochem. Lett. 2013, 6, 179-182. https://doi.org/10.1016/j.phytol.2012.12.006
- Hu, Q. F.; Zhou, B.; Huang, J. M.; Gao, X. M.; Shu, L. D.; Yang, G. Y.; Che, C. T. J. Nat. Prod. 2013, 76, 292-297. https://doi.org/10.1021/np300727f
- Gooding, G. V., Jr.; Hebert, T. T. Phytopathology 1967, 57, 1285-1287.
Cited by
- Two New Isoquinoline Alkaloids from the Barks of Cassia fistula and Their Anti-Tobacco Mosaic Virus Activity vol.53, pp.3, 2017, https://doi.org/10.1007/s10600-017-2033-0
- Flavones from Cassia leschenaultiana and Their Anti-Tobacco Mosaic Virus Activity vol.94, pp.11, 2017, https://doi.org/10.3987/COM-17-13805
- Three New Isoflavones from the Root of Pueraria lobata and their Bioactivities vol.94, pp.8, 2017, https://doi.org/10.3987/COM-17-13739
- (Willd.) and their bioactivities pp.1478-6427, 2017, https://doi.org/10.1080/14786419.2017.1385008
- ChemInform Abstract: Isoflavanones from the Stem of Cassia siamea and Their anti-Tobacco Mosaic Virus Activities. vol.45, pp.8, 2014, https://doi.org/10.1002/chin.201408229
- and their anti-tobacco mosaic virus activities vol.30, pp.22, 2016, https://doi.org/10.1080/14786419.2015.1120729
- Two New Flavones from Cassia pumila and Their Anti-Tobacco Mosaic Virus Activity vol.54, pp.6, 2018, https://doi.org/10.1007/s10600-018-2552-3
- -(allyloxy)arylaldehydes towards chroman-4-one derivatives vol.5, pp.20, 2018, https://doi.org/10.1039/C8QO00882E
- Two New Isoflavones from Pueraria lobata and Their Bioactivities vol.54, pp.5, 2018, https://doi.org/10.1007/s10600-018-2497-6
- Isolation of naturally occurring novel isoflavonoids: an update pp.1460-4752, 2019, https://doi.org/10.1039/C8NP00069G
- Isoflavanones from Desmodium oxyphyllum and their cytotoxicity vol.16, pp.7, 2013, https://doi.org/10.1080/10286020.2014.906406
- Flavonoids from the Leaves of Nicotiana tabacum and Their Anti-Tobacco Mosaic Virus Activity vol.89, pp.12, 2013, https://doi.org/10.3987/com-14-13108
- Flavones fromCassia siameaand their anti-tobacco mosaic virus activity vol.17, pp.9, 2013, https://doi.org/10.1080/10286020.2015.1034114
- Flavonoids from the Leaves of Sun Cured Tobacco and their Anti-Tobacco Mosaic Virus Activity vol.91, pp.6, 2013, https://doi.org/10.3987/com-15-13190
- Chromones from the Twigs of Cassia fistula and Their Anti-Tobacco Mosaic Virus Activities vol.91, pp.10, 2013, https://doi.org/10.3987/com-15-13301
- Two new benzolactones from the leaves of Nicotiana tabacum and their anti-tobacco mosaic virus activities vol.30, pp.13, 2013, https://doi.org/10.1080/14786419.2015.1104675
- Isoquinoline Alkaloids from the Twigs of Cassia fistula and Their Anti-Tobacco Mosaic Virus Activity vol.92, pp.1, 2013, https://doi.org/10.3987/com-15-13361
- Silver-Catalyzed Radical Cascade Cyclization toward 1,5-/1,3-Dicarbonyl Heterocycles: An Atom-/Step-Economical Strategy Leading to Chromenopyridines and Isoxazole-/Pyrazole-Containing Chroman-4-Ones vol.20, pp.19, 2013, https://doi.org/10.1021/acs.orglett.8b02627
- Chemical Constituents and Bioactivities of Several Indonesian Plants Typically Used in Jamu vol.66, pp.5, 2013, https://doi.org/10.1248/cpb.c17-00983
- Two New Chromone Derivatives from Cassia leschenaultiana and Their Anti-Tobacco Mosaic Virus Activity vol.55, pp.6, 2013, https://doi.org/10.1007/s10600-019-02883-5
- Fistuloates A-C: New antioxidative aromatic compounds isolated from Cassia fistula vol.43, pp.11, 2013, https://doi.org/10.1177/1747519819875052
- Radical Reactions for the Synthesis of 3‐Substituted Chroman‐4‐ones vol.2020, pp.11, 2013, https://doi.org/10.1002/ejoc.201901581
- Synthesis of sulfone-functionalized chroman-4-ones and chromans through visible-light-induced cascade radical cyclization under transition-metal-free conditions vol.22, pp.7, 2013, https://doi.org/10.1039/d0gc00009d
- Direct synthesis of 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone containing chroman-4-ones via a silver catalyzed radical cascade cyclization reaction vol.45, pp.34, 2013, https://doi.org/10.1039/d1nj03437e