DOI QR코드

DOI QR Code

Isoflavanones from the Stem of Cassia siamea and Their Anti-tobacco Mosaic Virus Activities

  • Hu, Qiu-Fen (Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities) ;
  • Niu, De-Yun (Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities) ;
  • Zhou, Bin (Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities) ;
  • Ye, Yan-Qing (Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities) ;
  • Du, Gang (Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities) ;
  • Meng, Chun-Yang (Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities) ;
  • Gao, Xue-Mei (Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities)
  • Received : 2013.06.19
  • Accepted : 2013.07.22
  • Published : 2013.10.20

Abstract

Two new isoflavanones, (3R) 7,2',4'-trihydroxy-3'-methoxy-5-methoxycarbonyl-isoflavanone (1) and (3R) 7,2'-dihydroxy-3',4'-dimethoxy-5-methoxycarbonyl-isoflavanone (2), together with six known isoflavanones (3-8), were isolated from the stems of Cassia siamea. The structure of 1-8 was elucidated by spectroscopic methods including extensive 1D- and 2D-NMR techniques. Compounds 1, 2, 5-8 were evaluated for their anti-tobacco mosaic virus (Anti-TMV) activity. The results showed that compounds 1 and 6 showed potential anti-TMV activity with inhibition rates of 24.6% and 26.9%, respectively. Compounds 2, 5, 7, 8 also showed anti-TMV activity with inhibition rates in the range of 11.8-18.6%.

Keywords

References

  1. Duraipandiyan, V.; Ignacimuthu, S. J. Ethnopharmacol. 2007, 112, 590-594. https://doi.org/10.1016/j.jep.2007.04.008
  2. Rajan, S.; Baburaj, D. S.; Sethuraman, M.; Parimala, S. Ethnobotany 2001, 6, 19-24.
  3. Ma, J.; Zhang, L. X.; Guan, Y. H. Chin. J. Ethnomed. Ethnopharm. 2004, 5, 178-180.
  4. Koyama, J.; Morita, I.; Tagahara, K.; Aqil, M. Phytochemistry 2001, 56, 849-851. https://doi.org/10.1016/S0031-9422(01)00025-5
  5. Koyama, J.; Nisino, Y.; Morita, I.; Kobayashi, N.; Osakai, T.; Tokuda, H. Bioorg. Med. Chem. Lett. 2008, 18, 4106-4109. https://doi.org/10.1016/j.bmcl.2008.05.109
  6. Sob, S. V. T.; Wabo, H. K.; Tchinda, A. T.; Tane, P.; Ngadjui, B. T.; Ye, Y. Biochem. Syst. Ecol. 2010, 38, 342-345. https://doi.org/10.1016/j.bse.2010.02.002
  7. Srivastava, C.; Siddiqui, I. R.; Singh. J. Indian Chem. Soc. 1992, 69, 111-115.
  8. Kuo, Y. H.; Lee, P. H.; Wein, Y. S. J. Nat. Prod. 2002, 65, 1165-1167. https://doi.org/10.1021/np020003k
  9. Hu, Q. F.; Zhou, B.; Gao, X. M.; Yang, L. Y.; Shu, L. D.; Shen, Y. Q.; Li, G. P.; Che, C. T.; Yang, G. Y. J. Nat. Prod. 2012, 75, 1909-1914. https://doi.org/10.1021/np300395m
  10. Oshimi, S.; Deguchi, J.; Hirasawa, Y.; Ekasari, W.; Widyawaruyanti, A.; Wahyuni, T. S.; Zaini, N. C.; Morita, H. J. Nat. Prod. 2009, 72, 1899-1901. https://doi.org/10.1021/np9004213
  11. Morita, H.; Oshimi, S.; Hirasawa, Y.; Koyama, K.; Honda, T.; Ekasari, W.; Indrayanto, G.; Zaini, N. C. Org. Lett. 2007, 9, 3691-3693. https://doi.org/10.1021/ol701623n
  12. Gao, X. M.; Shu, L. D.; Yang, L. Y.; Shen, Y. Q.; Cui, M. Z.; Li, X. M.; Hu, Q. F. Heterocycles 2013, 87, 125-131. https://doi.org/10.3987/COM-12-12580
  13. Geoffrey, A. L.; Roger, H. N. Phytochemistry 1986, 26, 295-300. https://doi.org/10.1016/S0031-9422(00)81531-9
  14. Alvarez, L.; Rios, M. Y.; Esquivel, C.; Chavez, M. I.; Delgado, G.; Aguilar, M. I.; Villarreal, M. L.; Navarro, V. J. Nat. Prod. 1998, 61, 767-770. https://doi.org/10.1021/np970586b
  15. Guchu S. M.; Yenesew, A.; Tsanuo, M. K.; Gikonyo, N. K.; Pickett, J. A.; Hooper, A. M.; Hassanali, A. Phytochemistry 2007, 68, 646-651. https://doi.org/10.1016/j.phytochem.2006.11.035
  16. Zhao, M.; Duan, J. A.; Che, C. T. Phytochemistry 2007, 68, 1471-1479. https://doi.org/10.1016/j.phytochem.2007.02.015
  17. Huang, X. Z.; Bai, X. S.; Liang, H.; Wang, C.; Li, W. J.; Guo, J. M.; Jiang, Z. Y. Bull. Korean Chem. Soc. 2013, 5, 1421-1424.
  18. Slade, D.; Ferreira, D.; Marais J. P. J. Phytochemistry 2005, 66, 2177-2215. https://doi.org/10.1016/j.phytochem.2005.02.002
  19. Gao, X. M.; Mu, H. X.; Li X .S.; Yang, G. Y.; Li, G. P.; Hu, Q. F. J. Chin. Chem. Soc. 2012, 59, 540-543. https://doi.org/10.1002/jccs.201100525
  20. Chen, Z. Y.; Tan, J. L.; Yang, G. Y.; Miao, M. M.; Chen, Y. K.; Li, T. F. Phytochem. Let. 2012, 5, 233-235. https://doi.org/10.1016/j.phytol.2012.01.001
  21. Zhao, W.; Zeng, X. Y.; Zhang, T.; Wang, L.; Yang, G. Y.; Chen, Y. K.; Hu, Q. F.; Miao, M. M. Phytochem. Lett. 2013, 6, 179-182. https://doi.org/10.1016/j.phytol.2012.12.006
  22. Hu, Q. F.; Zhou, B.; Huang, J. M.; Gao, X. M.; Shu, L. D.; Yang, G. Y.; Che, C. T. J. Nat. Prod. 2013, 76, 292-297. https://doi.org/10.1021/np300727f
  23. Gooding, G. V., Jr.; Hebert, T. T. Phytopathology 1967, 57, 1285-1287.

Cited by

  1. Two New Isoquinoline Alkaloids from the Barks of Cassia fistula and Their Anti-Tobacco Mosaic Virus Activity vol.53, pp.3, 2017, https://doi.org/10.1007/s10600-017-2033-0
  2. Flavones from Cassia leschenaultiana and Their Anti-Tobacco Mosaic Virus Activity vol.94, pp.11, 2017, https://doi.org/10.3987/COM-17-13805
  3. Three New Isoflavones from the Root of Pueraria lobata and their Bioactivities vol.94, pp.8, 2017, https://doi.org/10.3987/COM-17-13739
  4. (Willd.) and their bioactivities pp.1478-6427, 2017, https://doi.org/10.1080/14786419.2017.1385008
  5. ChemInform Abstract: Isoflavanones from the Stem of Cassia siamea and Their anti-Tobacco Mosaic Virus Activities. vol.45, pp.8, 2014, https://doi.org/10.1002/chin.201408229
  6. and their anti-tobacco mosaic virus activities vol.30, pp.22, 2016, https://doi.org/10.1080/14786419.2015.1120729
  7. Two New Flavones from Cassia pumila and Their Anti-Tobacco Mosaic Virus Activity vol.54, pp.6, 2018, https://doi.org/10.1007/s10600-018-2552-3
  8. -(allyloxy)arylaldehydes towards chroman-4-one derivatives vol.5, pp.20, 2018, https://doi.org/10.1039/C8QO00882E
  9. Two New Isoflavones from Pueraria lobata and Their Bioactivities vol.54, pp.5, 2018, https://doi.org/10.1007/s10600-018-2497-6
  10. Isolation of naturally occurring novel isoflavonoids: an update pp.1460-4752, 2019, https://doi.org/10.1039/C8NP00069G
  11. Isoflavanones from Desmodium oxyphyllum and their cytotoxicity vol.16, pp.7, 2013, https://doi.org/10.1080/10286020.2014.906406
  12. Flavonoids from the Leaves of Nicotiana tabacum and Their Anti-Tobacco Mosaic Virus Activity vol.89, pp.12, 2013, https://doi.org/10.3987/com-14-13108
  13. Flavones fromCassia siameaand their anti-tobacco mosaic virus activity vol.17, pp.9, 2013, https://doi.org/10.1080/10286020.2015.1034114
  14. Flavonoids from the Leaves of Sun Cured Tobacco and their Anti-Tobacco Mosaic Virus Activity vol.91, pp.6, 2013, https://doi.org/10.3987/com-15-13190
  15. Chromones from the Twigs of Cassia fistula and Their Anti-Tobacco Mosaic Virus Activities vol.91, pp.10, 2013, https://doi.org/10.3987/com-15-13301
  16. Two new benzolactones from the leaves of Nicotiana tabacum and their anti-tobacco mosaic virus activities vol.30, pp.13, 2013, https://doi.org/10.1080/14786419.2015.1104675
  17. Isoquinoline Alkaloids from the Twigs of Cassia fistula and Their Anti-Tobacco Mosaic Virus Activity vol.92, pp.1, 2013, https://doi.org/10.3987/com-15-13361
  18. Silver-Catalyzed Radical Cascade Cyclization toward 1,5-/1,3-Dicarbonyl Heterocycles: An Atom-/Step-Economical Strategy Leading to Chromenopyridines and Isoxazole-/Pyrazole-Containing Chroman-4-Ones vol.20, pp.19, 2013, https://doi.org/10.1021/acs.orglett.8b02627
  19. Chemical Constituents and Bioactivities of Several Indonesian Plants Typically Used in Jamu vol.66, pp.5, 2013, https://doi.org/10.1248/cpb.c17-00983
  20. Two New Chromone Derivatives from Cassia leschenaultiana and Their Anti-Tobacco Mosaic Virus Activity vol.55, pp.6, 2013, https://doi.org/10.1007/s10600-019-02883-5
  21. Fistuloates A-C: New antioxidative aromatic compounds isolated from Cassia fistula vol.43, pp.11, 2013, https://doi.org/10.1177/1747519819875052
  22. Radical Reactions for the Synthesis of 3‐Substituted Chroman‐4‐ones vol.2020, pp.11, 2013, https://doi.org/10.1002/ejoc.201901581
  23. Synthesis of sulfone-functionalized chroman-4-ones and chromans through visible-light-induced cascade radical cyclization under transition-metal-free conditions vol.22, pp.7, 2013, https://doi.org/10.1039/d0gc00009d
  24. Direct synthesis of 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone containing chroman-4-ones via a silver catalyzed radical cascade cyclization reaction vol.45, pp.34, 2013, https://doi.org/10.1039/d1nj03437e