DOI QR코드

DOI QR Code

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua (School of Chemistry and Chemical Engineering, Southwest University) ;
  • Shen, Wei (School of Chemistry and Chemical Engineering, Southwest University) ;
  • He, Rong-Xing (School of Chemistry and Chemical Engineering, Southwest University) ;
  • Li, Ming (School of Chemistry and Chemical Engineering, Southwest University)
  • Received : 2013.11.26
  • Accepted : 2013.07.21
  • Published : 2013.10.20

Abstract

The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Keywords

References

  1. Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 465. https://doi.org/10.1016/j.solmat.2008.12.012
  2. Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J. J. Mater. Chem. 2009, 19, 5442. https://doi.org/10.1039/b823001c
  3. Krebs, F. C. Org. Electron 2009, 10, 761. https://doi.org/10.1016/j.orgel.2009.03.009
  4. Liang, Y.; Yu, L. Acc. Chem. Res. 2010, 43(9), 1227-1236. https://doi.org/10.1021/ar1000296
  5. Information on http://www.konarka.com/index.php/site/ pressreleasedetail/konarkas_power_achieves_world_record_83 _efficiency_certification_fr (January 26, 2011).
  6. Hadipour, A.; De Boer B.; Wildeman J.; Kooistra, F. B.; Hummelen, J. C.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J.; Bolm, P. W. M. Adv. Funct. Mate. 2006, 16, 1897. https://doi.org/10.1002/adfm.200600138
  7. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222. https://doi.org/10.1126/science.1141711
  8. Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91, 954. https://doi.org/10.1016/j.solmat.2007.01.015
  9. Wienk, M. M.; Wiljan, J. M. K. et al. Angew. Chem. Int. Ed. 2003, 42, 3371. https://doi.org/10.1002/anie.200351647
  10. Brabec, C. J.; Cravino, A.; Meissner, D. et al. Adv. Funct. Mater. 2001, 11, 374. https://doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
  11. Backer, S. A.; Sivula, K.; Kavulak, D. F.; Frechet, J. M. J. Chem. Mater. 2007, 19, 2927. https://doi.org/10.1021/cm070893v
  12. Kooistra, F. B.; Knol, J.; Kastenberg, F. et al. Org. Lett. 2007, 9, 551. https://doi.org/10.1021/ol062666p
  13. Svensson, M.; Zhang, F.; Veenstra, S. C. et al. Adv. Mater. 2003, 15, 988. https://doi.org/10.1002/adma.200304150
  14. Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater. 2005, 15, 745. https://doi.org/10.1002/adfm.200400416
  15. Gong, X.; Tong, M.; Xia, Y. et al. Science 2009, 325, 1665. https://doi.org/10.1126/science.1176706
  16. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; C. Brabec, J. Adv. Mater. 2006, 18, 789. https://doi.org/10.1002/adma.200501717
  17. Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. Proc. Natl. Acad. Sci. USA 2008, 105, 2783. https://doi.org/10.1073/pnas.0711990105
  18. Cheung, D. L.; Mcmahon, D. P.; Troisi, A. J. Phys. Chem. B 2009, 113, 9393. https://doi.org/10.1021/jp904057m
  19. Northrup, J. E. Phys. Rev. B 2007, 76, 245202/1.
  20. Guo, J.; Ohkita, H.; Benten, H.; Ito, S. J. Am. Chem. Soc. 2010, 132, 6154. https://doi.org/10.1021/ja100302p
  21. Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243. https://doi.org/10.1021/ol062030y
  22. Zade, S. S.; Zamoshchik, N.; Bendikov, M. Acc. Chem. Res. 2011, 44, 14. https://doi.org/10.1021/ar1000555
  23. Patra, A.; Wijsboom, Y. H.; Leitus, G.; Bendikov, M. Org. Lett. 2009, 11, 1487. https://doi.org/10.1021/ol9000608
  24. Walker, W.; Veldman, B.; Chiechi, R.; Patil, S.; Bendikov, M.; Wudl, F. Macromolecules 2008, 41, 7278. https://doi.org/10.1021/ma8004873
  25. Xie, X. H.; Shen, W.; Fu, Y. W.; Li, M. Mol. Simulat. 2010, 36, 836. https://doi.org/10.1080/08927022.2010.482136
  26. Parr, G.; Yang, W. Density-functional Theory of Atoms and Molecules; Oxford New York: University Press; 1989.
  27. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913
  28. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  29. Fripiat, J. G.; Flamant, I.; Harris, F. E.; Delhalle, J. Int. J. Quantum Chem. 2000, 80, 856. https://doi.org/10.1002/1097-461X(2000)80:4/5<856::AID-QUA35>3.0.CO;2-9
  30. Bakhshi, A. K.; Liegener, C. M.; Ladik, J.; Seell, M. Synth. Met. 1989, 30, 79. https://doi.org/10.1016/0379-6779(89)90643-7
  31. Bakhshi, A. K.; Ladik, J. Int. J. Quantum Chem. 1992, 42, 997. https://doi.org/10.1002/qua.560420433
  32. Champagne, B.; Mosley, D. H.; Ardre, J. M. J. Chem. Phys. 1994, 100, 2034. https://doi.org/10.1063/1.466555
  33. Mosley, D. H.; Fripiat, J. G.; Champagne, B.; Andre, J. M. Int. J. Quantum Chem. 1994, S28, 451.
  34. Kudin, K. N.; Scuseria, G. E. Phys. Rev. B 2000, 61, 16440. https://doi.org/10.1103/PhysRevB.61.16440
  35. Delhalle, J.; Fripiat, J. G.; Harris, F. E. Int. J. Quantum Chem. 2002, 90, 587. https://doi.org/10.1002/qua.10047
  36. Delhalle, J.; Fripiat, J. G.; Harris, F. E. Int. J. Quantum Chem. 2002, 90, 1326. https://doi.org/10.1002/qua.10366
  37. Fripiat, J. G.; Delhalle, J.; Harris, F. E. Chem. Phys. Lett. 2006, 422, 11. https://doi.org/10.1016/j.cplett.2006.02.043
  38. Hirata, S. PCCP 2009, 11, 8397. https://doi.org/10.1039/b905812p
  39. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Pople, J. A. et al. (2003) Gaussian 03, Revision A.01.Gaussian, Inc, Pittsburgh PA.
  40. Bader, R. F. W. Atoms in Molecules, A Quantum Theory; International Series of Monographs in Chemistry; Vol. 22, Oxford, U.K.: Oxford University Press; 1990.
  41. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317. https://doi.org/10.1021/ja960582d
  42. Shen, W.; Li, M.; He, R. X.; Zhang, J. S.; Lei, W. Polymer 2007, 48, 3912. https://doi.org/10.1016/j.polymer.2007.04.045
  43. Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (THEOCHEM) 1988, 46, 41.
  44. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  45. Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211. https://doi.org/10.1021/ja00544a007
  46. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
  47. Zheng, W. X.; Wong, N. B.; Wang, W. Z.; Zhou, G.; Tian, A. J. Phys. Chem. A 2004, 108, 97. https://doi.org/10.1021/jp035558i
  48. Fu, Y. W.; Shen, W.; Li, M. Polymer 2008, 49, 2614. https://doi.org/10.1016/j.polymer.2008.03.051
  49. Schleyer, P. v. R.; Jiao, H.; van Eikema Hommes, N. J. R.; Malkin, V. G.; Malkina, O. J. Am. Chem. Soc. 1997, 119, 12669. https://doi.org/10.1021/ja9719135
  50. Schleyer, P. v. R.; Jiao, H. Pure. Appl. Chem. 1996, 68, 209. https://doi.org/10.1351/pac199668020209
  51. Schleyer, P. v. R.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H. J.; Puchta, R.; van Eikema Hommes, N. J. R. Org. Lett. 2001, 3, 2465. https://doi.org/10.1021/ol016217v
  52. Chen, T.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233. https://doi.org/10.1021/ja00106a027
  53. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. https://doi.org/10.1021/cr9904009
  54. Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; de Boer, B. Polym. Rev. 2008, 48, 531. https://doi.org/10.1080/15583720802231833
  55. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374. https://doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
  56. Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M. Appl. Phys. Lett. 2005, 86, 123509/1-123509/3.
  57. Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T. Appl. Phys. 2003, 94, 6849. https://doi.org/10.1063/1.1620683
  58. Bauschlicher, C. W., Jr.; Lawson, J. W. Phys. Rev. B 2007, 75, 115406/1-115406/6.
  59. Lo, M. F.; Ng, T. W.; Liu, T. Z.; Roy, V. A. L.; Lai, S. L.; Fung, M. K.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 2010, 96, 113303/1-113303/3.
  60. Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971. https://doi.org/10.1021/cr040084k
  61. Haddon, R. C.; Siegrist, T.; Fleming, R. M.; Bridenbaugh, P. M.; Laudise, R. A. J. Mater. Chem. 1995, 5, 1719. https://doi.org/10.1039/jm9950501719
  62. Cornil, J.; Calbert, J. P.; Bredas, J. L. J. Am. Chem. Soc. 2001, 123, 1250. https://doi.org/10.1021/ja005700i
  63. Cheng, Y. C.; Silbery, R. J.; da Silva Filho, D. A.; Calbert, J. P.; Cornil, J.; Bredas, J. L. J. Chem. Phys. 2003, 118, 3764. https://doi.org/10.1063/1.1539090
  64. Zhu, J. G.; Zheng, W. X.; Zheng, J. G.; Sun, X. S.; Wang, H. T. Solid Physics, Science Press, 2005.

Cited by

  1. Fabrication and properties of a high-performance chlorine doped graphene quantum dot based photovoltaic detector vol.5, pp.37, 2015, https://doi.org/10.1039/C5RA02358K
  2. Theoretical Study on the Photoelectric Properties of a Class of Copolymers Based on Benzodithiophene for Solar Cells vol.2018, pp.1687-9430, 2018, https://doi.org/10.1155/2018/3270313
  3. Theoretical and experimental investigations of the 2-(4-chlorophenyl)-3-{[5-(2-cyano-2-phenylethenyl)]furan-2-yl}acrylonitrile molecule as a potential acceptor in organic solar cells vol.27, pp.23, 2013, https://doi.org/10.1088/0957-4484/27/23/234003
  4. Theoretical, spectroscopical, and experimental investigations of small azomethine molecules for organic solar cells vol.44, pp.9, 2020, https://doi.org/10.1177/1747519820912671
  5. Thiacrown Ethers Engaged C60 through Charge Transfer: Experimental and Theoretical Study vol.5, pp.39, 2013, https://doi.org/10.1021/acsomega.0c01877
  6. Theoretical design of low bandgap donor-acceptor (D-A) monomers for polymer solar cells: DFT and TD-DFT study vol.24, pp.1, 2013, https://doi.org/10.1080/15685551.2021.1921923
  7. Donor−acceptor−donor (D-A-D) structural monomers as donor materials in polymer solar cells: a DFT/TDDFT approach vol.24, pp.1, 2013, https://doi.org/10.1080/15685551.2021.1997178
  8. Computational and experimental investigations of a cyano group containing novel small molecule organic semiconductor vol.32, pp.11, 2013, https://doi.org/10.1007/s10854-021-06030-1