References
- Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 465. https://doi.org/10.1016/j.solmat.2008.12.012
- Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J. J. Mater. Chem. 2009, 19, 5442. https://doi.org/10.1039/b823001c
- Krebs, F. C. Org. Electron 2009, 10, 761. https://doi.org/10.1016/j.orgel.2009.03.009
- Liang, Y.; Yu, L. Acc. Chem. Res. 2010, 43(9), 1227-1236. https://doi.org/10.1021/ar1000296
- Information on http://www.konarka.com/index.php/site/ pressreleasedetail/konarkas_power_achieves_world_record_83 _efficiency_certification_fr (January 26, 2011).
- Hadipour, A.; De Boer B.; Wildeman J.; Kooistra, F. B.; Hummelen, J. C.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J.; Bolm, P. W. M. Adv. Funct. Mate. 2006, 16, 1897. https://doi.org/10.1002/adfm.200600138
- Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222. https://doi.org/10.1126/science.1141711
- Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91, 954. https://doi.org/10.1016/j.solmat.2007.01.015
- Wienk, M. M.; Wiljan, J. M. K. et al. Angew. Chem. Int. Ed. 2003, 42, 3371. https://doi.org/10.1002/anie.200351647
- Brabec, C. J.; Cravino, A.; Meissner, D. et al. Adv. Funct. Mater. 2001, 11, 374. https://doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
- Backer, S. A.; Sivula, K.; Kavulak, D. F.; Frechet, J. M. J. Chem. Mater. 2007, 19, 2927. https://doi.org/10.1021/cm070893v
- Kooistra, F. B.; Knol, J.; Kastenberg, F. et al. Org. Lett. 2007, 9, 551. https://doi.org/10.1021/ol062666p
- Svensson, M.; Zhang, F.; Veenstra, S. C. et al. Adv. Mater. 2003, 15, 988. https://doi.org/10.1002/adma.200304150
- Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganas, O. Adv. Funct. Mater. 2005, 15, 745. https://doi.org/10.1002/adfm.200400416
- Gong, X.; Tong, M.; Xia, Y. et al. Science 2009, 325, 1665. https://doi.org/10.1126/science.1176706
- Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; C. Brabec, J. Adv. Mater. 2006, 18, 789. https://doi.org/10.1002/adma.200501717
- Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. Proc. Natl. Acad. Sci. USA 2008, 105, 2783. https://doi.org/10.1073/pnas.0711990105
- Cheung, D. L.; Mcmahon, D. P.; Troisi, A. J. Phys. Chem. B 2009, 113, 9393. https://doi.org/10.1021/jp904057m
- Northrup, J. E. Phys. Rev. B 2007, 76, 245202/1.
- Guo, J.; Ohkita, H.; Benten, H.; Ito, S. J. Am. Chem. Soc. 2010, 132, 6154. https://doi.org/10.1021/ja100302p
- Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243. https://doi.org/10.1021/ol062030y
- Zade, S. S.; Zamoshchik, N.; Bendikov, M. Acc. Chem. Res. 2011, 44, 14. https://doi.org/10.1021/ar1000555
- Patra, A.; Wijsboom, Y. H.; Leitus, G.; Bendikov, M. Org. Lett. 2009, 11, 1487. https://doi.org/10.1021/ol9000608
- Walker, W.; Veldman, B.; Chiechi, R.; Patil, S.; Bendikov, M.; Wudl, F. Macromolecules 2008, 41, 7278. https://doi.org/10.1021/ma8004873
- Xie, X. H.; Shen, W.; Fu, Y. W.; Li, M. Mol. Simulat. 2010, 36, 836. https://doi.org/10.1080/08927022.2010.482136
- Parr, G.; Yang, W. Density-functional Theory of Atoms and Molecules; Oxford New York: University Press; 1989.
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Fripiat, J. G.; Flamant, I.; Harris, F. E.; Delhalle, J. Int. J. Quantum Chem. 2000, 80, 856. https://doi.org/10.1002/1097-461X(2000)80:4/5<856::AID-QUA35>3.0.CO;2-9
- Bakhshi, A. K.; Liegener, C. M.; Ladik, J.; Seell, M. Synth. Met. 1989, 30, 79. https://doi.org/10.1016/0379-6779(89)90643-7
- Bakhshi, A. K.; Ladik, J. Int. J. Quantum Chem. 1992, 42, 997. https://doi.org/10.1002/qua.560420433
- Champagne, B.; Mosley, D. H.; Ardre, J. M. J. Chem. Phys. 1994, 100, 2034. https://doi.org/10.1063/1.466555
- Mosley, D. H.; Fripiat, J. G.; Champagne, B.; Andre, J. M. Int. J. Quantum Chem. 1994, S28, 451.
- Kudin, K. N.; Scuseria, G. E. Phys. Rev. B 2000, 61, 16440. https://doi.org/10.1103/PhysRevB.61.16440
- Delhalle, J.; Fripiat, J. G.; Harris, F. E. Int. J. Quantum Chem. 2002, 90, 587. https://doi.org/10.1002/qua.10047
- Delhalle, J.; Fripiat, J. G.; Harris, F. E. Int. J. Quantum Chem. 2002, 90, 1326. https://doi.org/10.1002/qua.10366
- Fripiat, J. G.; Delhalle, J.; Harris, F. E. Chem. Phys. Lett. 2006, 422, 11. https://doi.org/10.1016/j.cplett.2006.02.043
- Hirata, S. PCCP 2009, 11, 8397. https://doi.org/10.1039/b905812p
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Pople, J. A. et al. (2003) Gaussian 03, Revision A.01.Gaussian, Inc, Pittsburgh PA.
- Bader, R. F. W. Atoms in Molecules, A Quantum Theory; International Series of Monographs in Chemistry; Vol. 22, Oxford, U.K.: Oxford University Press; 1990.
- Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317. https://doi.org/10.1021/ja960582d
- Shen, W.; Li, M.; He, R. X.; Zhang, J. S.; Lei, W. Polymer 2007, 48, 3912. https://doi.org/10.1016/j.polymer.2007.04.045
- Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (THEOCHEM) 1988, 46, 41.
- Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
- Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211. https://doi.org/10.1021/ja00544a007
- Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
- Zheng, W. X.; Wong, N. B.; Wang, W. Z.; Zhou, G.; Tian, A. J. Phys. Chem. A 2004, 108, 97. https://doi.org/10.1021/jp035558i
- Fu, Y. W.; Shen, W.; Li, M. Polymer 2008, 49, 2614. https://doi.org/10.1016/j.polymer.2008.03.051
- Schleyer, P. v. R.; Jiao, H.; van Eikema Hommes, N. J. R.; Malkin, V. G.; Malkina, O. J. Am. Chem. Soc. 1997, 119, 12669. https://doi.org/10.1021/ja9719135
- Schleyer, P. v. R.; Jiao, H. Pure. Appl. Chem. 1996, 68, 209. https://doi.org/10.1351/pac199668020209
- Schleyer, P. v. R.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H. J.; Puchta, R.; van Eikema Hommes, N. J. R. Org. Lett. 2001, 3, 2465. https://doi.org/10.1021/ol016217v
- Chen, T.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233. https://doi.org/10.1021/ja00106a027
- Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. https://doi.org/10.1021/cr9904009
- Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; de Boer, B. Polym. Rev. 2008, 48, 531. https://doi.org/10.1080/15583720802231833
- Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374. https://doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
- Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M. Appl. Phys. Lett. 2005, 86, 123509/1-123509/3.
- Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T. Appl. Phys. 2003, 94, 6849. https://doi.org/10.1063/1.1620683
- Bauschlicher, C. W., Jr.; Lawson, J. W. Phys. Rev. B 2007, 75, 115406/1-115406/6.
- Lo, M. F.; Ng, T. W.; Liu, T. Z.; Roy, V. A. L.; Lai, S. L.; Fung, M. K.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 2010, 96, 113303/1-113303/3.
- Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971. https://doi.org/10.1021/cr040084k
- Haddon, R. C.; Siegrist, T.; Fleming, R. M.; Bridenbaugh, P. M.; Laudise, R. A. J. Mater. Chem. 1995, 5, 1719. https://doi.org/10.1039/jm9950501719
- Cornil, J.; Calbert, J. P.; Bredas, J. L. J. Am. Chem. Soc. 2001, 123, 1250. https://doi.org/10.1021/ja005700i
- Cheng, Y. C.; Silbery, R. J.; da Silva Filho, D. A.; Calbert, J. P.; Cornil, J.; Bredas, J. L. J. Chem. Phys. 2003, 118, 3764. https://doi.org/10.1063/1.1539090
- Zhu, J. G.; Zheng, W. X.; Zheng, J. G.; Sun, X. S.; Wang, H. T. Solid Physics, Science Press, 2005.
Cited by
- Fabrication and properties of a high-performance chlorine doped graphene quantum dot based photovoltaic detector vol.5, pp.37, 2015, https://doi.org/10.1039/C5RA02358K
- Theoretical Study on the Photoelectric Properties of a Class of Copolymers Based on Benzodithiophene for Solar Cells vol.2018, pp.1687-9430, 2018, https://doi.org/10.1155/2018/3270313
- Theoretical and experimental investigations of the 2-(4-chlorophenyl)-3-{[5-(2-cyano-2-phenylethenyl)]furan-2-yl}acrylonitrile molecule as a potential acceptor in organic solar cells vol.27, pp.23, 2013, https://doi.org/10.1088/0957-4484/27/23/234003
- Theoretical, spectroscopical, and experimental investigations of small azomethine molecules for organic solar cells vol.44, pp.9, 2020, https://doi.org/10.1177/1747519820912671
- Thiacrown Ethers Engaged C60 through Charge Transfer: Experimental and Theoretical Study vol.5, pp.39, 2013, https://doi.org/10.1021/acsomega.0c01877
- Theoretical design of low bandgap donor-acceptor (D-A) monomers for polymer solar cells: DFT and TD-DFT study vol.24, pp.1, 2013, https://doi.org/10.1080/15685551.2021.1921923
- Donor−acceptor−donor (D-A-D) structural monomers as donor materials in polymer solar cells: a DFT/TDDFT approach vol.24, pp.1, 2013, https://doi.org/10.1080/15685551.2021.1997178
- Computational and experimental investigations of a cyano group containing novel small molecule organic semiconductor vol.32, pp.11, 2013, https://doi.org/10.1007/s10854-021-06030-1