DOI QR코드

DOI QR Code

Green Synthesis of Ag Thin Films on Glass Substrates and Their Application in Surface-Enhanced Raman Scattering

  • Received : 2013.06.17
  • Accepted : 2013.07.09
  • Published : 2013.10.20

Abstract

Nanostructured Ag thin films could be facilely prepared by soaking glass substrates in ethanolic solutions containing $Ag_2O$ powders at an elevated temperature. The formation of zero-valent Ag was corroborated using X-ray diffraction and X-ray photoelectron spectroscopy. The deposition of Ag onto a glass substrate was readily controlled simply by changing the reaction time. Due to the aggregated structures of Ag, the surface-enhanced Raman scattering spectra of benzenethiol could be clearly identified using the Ag-coated glass. The enhancement factor at 514.5 nm excitation estimated using benzenethiol reached $1.0{\times}10^5$ while the detection limit of rhodamine 6G was found to be as low as $1.0{\times}10^{-13}$ M. Since this one-pot fabrication method is eco-friendly and is suitable for the mass production of diverse Ag films, it is expected to play a significant role in the development of surface plasmon-based analytical devices.

Keywords

References

  1. Eustis, S.; El-Sayed, M. Chem. Soc. Rev. 2006, 35, 209. https://doi.org/10.1039/b514191e
  2. Brus, L. Acc. Chem. Res. 2008, 41, 1742. https://doi.org/10.1021/ar800121r
  3. Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. J. Phys. Chem. B 2003, 107, 9964.
  4. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667. https://doi.org/10.1103/PhysRevLett.78.1667
  5. Michaels, A. M.; Jiang; Brus, L. J. Phys. Chem. B 2000, 104, 11965. https://doi.org/10.1021/jp0025476
  6. Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R. Anal. Chem. 2001, 73, 3674. https://doi.org/10.1021/ac0101961
  7. McNay, G.; Eustace, D.; Smith, W. E.; Faulds, K.; Graham, D. Appl. Spectrosc. 2011, 65, 825. https://doi.org/10.1366/11-06365
  8. Smith, W. E. Chem. Soc. Rev. 2008, 37, 955. https://doi.org/10.1039/b708841h
  9. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163. https://doi.org/10.1016/0009-2614(74)85388-1
  10. Norrod, K. L.; Sudnik, L. M.; Rousell, D.; Rowlen, K. L. Appl. Spectrosc. 1997, 51, 994. https://doi.org/10.1366/0003702971941377
  11. Stirland, D. J. Appl. Phys. Lett. 1966, 8, 326. https://doi.org/10.1063/1.1754461
  12. Okazaki, H.; Sawada, S.; Kimura, M.; Tanaka, H.; Matsumoto, T.; Ohtake, T.; Inoue, S. IEEE Electron Device Lett. 2012, 33, 1087. https://doi.org/10.1109/LED.2012.2196970
  13. Pinkhasova, P.; Yang, L.; Zhang, Y.; Sukhishvili, S.; Du, H. Langmuir 2012, 28, 2529. https://doi.org/10.1021/la2047992
  14. Stiufiuc, R.; Iacovita, C.; Lucaciu, C.; Stiufiuc, G.; Dutu, A.; Braescu, C.; Leopold, N. Nanoscale Res. Lett. 2013, 8, 1. https://doi.org/10.1186/1556-276X-8-1
  15. Mallory, G. O.; Hajdu, J. B., Eds.; Electroless Plating: Fundamentals and Applications; American Electroplaters and Surface Finishers Society: Orlando, FL, 1990; Chapter 17.
  16. Inoue, M.; Hayashi, Y.; Takizawa, H.; Suganuma, K. Colloid Polym. Sci. 2010, 288, 1061. https://doi.org/10.1007/s00396-010-2240-8
  17. Park, H. K.; Yoon, J. K.; Kim, K. Langmuir 2006, 22, 1626. https://doi.org/10.1021/la052559o
  18. Wang, S.; Tseng, W. J. Nanopart. Res. 2009, 11, 947. https://doi.org/10.1007/s11051-008-9482-0
  19. Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Chichester, U.K., 1983.
  20. Van Duyne, R. P.; Hulteen, J. C.; Treichel, D. A. J. Chem. Phys. 1993, 99, 2101. https://doi.org/10.1063/1.465276
  21. Philip, D.; Unni, C.; Aromal, S. A.; Vidhu, V. K. Spectrochim. Acta A 2011, 78, 899. https://doi.org/10.1016/j.saa.2010.12.060
  22. Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Langmuir 2005, 21, 1931. https://doi.org/10.1021/la0477183
  23. Kim, M.; Cho, Y.; Park, S.; Huh, Y. Cryst. Growth Des. 2012, 12, 4180. https://doi.org/10.1021/cg300681b
  24. Murray, B. J.; Li, Q.; Newberg, J. T.; Menke, E. J.; Hemminger, J. C.; Penner, R. M. Nano Lett. 2005, 5, 2319. https://doi.org/10.1021/nl051834o
  25. Joo, T. H.; Kim, M. S.; Kim, K. J. Raman Spectrosc. 1987, 18, 57. https://doi.org/10.1002/jrs.1250180111
  26. Lee, J.; Lee, H.; Kim, K.; Shin, K. Anal. Bioanal. Chem. 2010, 397, 557. https://doi.org/10.1007/s00216-009-3365-9
  27. Nie, S.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  28. Upender, G.; Satyavathi, R.; Raju, B.; Shadak Alee, K.; Narayana Rao, D.; Bansal, C. Chem. Phys. Lett. 2011, 511, 309. https://doi.org/10.1016/j.cplett.2011.06.039
  29. Wan, L.; Terashima, M.; Noda, H.; Osawa, M. J. Phys. Chem. B 2000, 104, 3563.

Cited by

  1. A new approach for deposition of silver film from AgCl through successive ionic layer adsorption and reaction technique vol.24, pp.12, 2017, https://doi.org/10.1007/s11771-017-3693-4