DOI QR코드

DOI QR Code

Continuous Production of Immunoliposomes using a Microvalve-controlled Microfluidic Device (μFD)

  • Jin, Yan (Department of Chemistry and Nano Science (BK21 plus), Ewha Global Top 5 Program, Ewha Womans University) ;
  • Kim, So Hyun (Department of Chemistry and Nano Science (BK21 plus), Ewha Global Top 5 Program, Ewha Womans University) ;
  • Kim, Myunghee (Department of Food Science and Technology, Yeungnam University) ;
  • Park, Sungsu (Department of Chemistry and Nano Science (BK21 plus), Ewha Global Top 5 Program, Ewha Womans University)
  • Received : 2013.05.12
  • Accepted : 2013.07.08
  • Published : 2013.10.20

Abstract

Immunoliposomes (antibody-conjugated liposomes) are highly useful as both a drug carrier in drug delivery and as a reporting probe in immunodiagnostics. However, antibody conjugation is lengthy and cumbersome, because this includes several steps such as derivatization of the antibody, conjugation of the derivatized antibody to liposomes, and separation of the unbound antibodies from immunoliposomes. Recently, liposome preparation steps have simplified by using microfluidic devices (${\mu}FDs$) where liposomes are formed when a stream of lipids in solvent is hydrodynamically focused between two oblique buffer streams in a microchannel. Herein, we report a simple method for the production of immunoliposomes (rabbit IgG-conjugated liposomes) using microvalve-controlled ${\mu}FD$. The presence of antibody on the liposome was verified by observing the binding of immunoliposomes to rabbit IgG on the surface. The results suggest that immunoliposomes can be easily prepared through sequential mixing of antibody, conjugation reagents, preformed liposomes using microvalve-controlled ${\mu}FD$.

Keywords

References

  1. Lian, T. S.; Rodney, J. Y. H. J. Pharm. Sci. 2001, 90, 667. https://doi.org/10.1002/jps.1023
  2. Feng, S. S.; Ruan, G.; Li, Q. T. Biomaterials 2004, 25, 5181. https://doi.org/10.1016/j.biomaterials.2003.12.013
  3. Torchilin, V. P. Nat. Rev. Drug Discov. 2005, 4, 145. https://doi.org/10.1038/nrd1632
  4. Heath, T. D.; Fraley, R. T.; Papahadjopoulos, D. Science 1980, 210, 539. https://doi.org/10.1126/science.7423203
  5. Kung, V. T.; Maxim, P. E.; Veltri, R. W.; Martin, F. Biochim. Biophys. Acta 1985, 839, 105. https://doi.org/10.1016/0304-4165(85)90187-4
  6. Park, S.; Durst, R. A. Anal. Chem. 2000, 280, 151.
  7. Jahn, A.; Vreeland, W. N.; DeVoe, D. L.; Locascio, L. E.; Gaitan, M. Langmuir 2007, 23, 6289. https://doi.org/10.1021/la070051a
  8. Kou, S.; Lee, H. N.; Van Noort, D.; Swamy, K. M. K.; Kim, S. H.; Soh, J. H.; Lee, K. M.; Nam, S. W.; Yoon, J.; Park, S. Angew. Chem. Int. Ed. 2008, 47, 872. https://doi.org/10.1002/anie.200703813
  9. Xiao, L.; Mahto, S. K.; Rhee, S. W. Biochip J. 2012, 6, 335. https://doi.org/10.1007/s13206-012-6405-z
  10. Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113. https://doi.org/10.1126/science.288.5463.113
  11. Kim, J. A.; Hwang, H.; Jun, E. J.; Nam, S. W.; Lee, K. M.; Kim, S. H.; Yoon, J.; Kang, S.; Park, S. Bull. Korean Chem. Soc. 2008, 29, 225. https://doi.org/10.5012/bkcs.2008.29.1.225
  12. Lee, N. Y.; Yang, Y. S.; Kim, Y. S.; Park, S. Bull. Korean Chem. Soc. 2006, 27, 479. https://doi.org/10.5012/bkcs.2006.27.4.479
  13. Zhang, L.; Hu, J.; Lu, Z. J. Colloid Interface Sci. 1997, 190, 76. https://doi.org/10.1006/jcis.1997.4820
  14. Shukla, S.; Leem, H.; Kim, M. Anal. Bioanal. Chem. 2011, 401,2581. https://doi.org/10.1007/s00216-011-5327-2
  15. Graber, D. J.; Zieziulewicz, T. J.; Lawrence, D. A.; Shain, W.; Turner, J. N. Langmuir 2003, 19, 5431 https://doi.org/10.1021/la034199f
  16. Ho, J. A. A.; Hsu, H. W. Anal. Chem. 2003, 75, 4330. https://doi.org/10.1021/ac0343580