DOI QR코드

DOI QR Code

Direction of Intercalation of a bis-Ru(II) Complex to DNA Probed by a Minor Groove Binding Molecule 4',6-Diamidino-2-phenylindole

  • Received : 2013.05.21
  • Accepted : 2013.07.04
  • Published : 2013.10.20

Abstract

Direction of intercalation to DNA of the planar dipyrido[3,2-a:2',3'-c]phenazine ligands (dppz) of a bis-Ru(II) complex namely, $[Ru(1,10-phenanthroline)_2dipyrido[3,2-a:2^{\prime},3^{\prime}-c]phenazine]^{2+}$ linkered by a 1,3-bis(4-pyridyl)propane, was investigated by probing the behavior of 4',6-diamidino-2-phenylindole (DAPI) that bound deep in the minor groove. Bis-intercalation of DPPZ resulted in a little blue shift and hyperchromism in DAPI absorption band, and a large decrease in DAPI fluorescence intensity which accompined by an increase in the dppz emission intensity. Diminishing the intenisty of the positive induced circular dichroism (CD) and linear dichroism (LD) were also observed. These spectral changes indicated that insertion of dppz ligand caused the change of the binding mode of DAPI, which probably moved to the exterior of DNA from the minor groove and interacted with the phospghate groups of DNA by electrostatic interaction. At the surface of DNA, DAPI binds at the phosphate groups of DNA by electrostatic attraction. Consequently, this observation indicated that the dppz ligand intercalated from the minor groove.

Keywords

References

  1. Barton, J. K. Science 1986, 233, 727-734. https://doi.org/10.1126/science.3016894
  2. Zeglis, B. M.; Pierre, V. C.; Barton, J. K. Chem. Commun. 2007, 4565-4579.
  3. Metcalfe, C.; Thomas, J. A. Chem. Soc. Rev. 2003, 32, 215-224. https://doi.org/10.1039/b201945k
  4. Moucheron, C. New J. Chem. 2009, 33, 235-245. https://doi.org/10.1039/b817016a
  5. Gill, M. R.; Jorge, G.-L.; Foster, S. J.; Smythe, C.; Battaglia, G.; Jim, A.; Thomas, A. Nature Chem. 2009, 1, 662-667. https://doi.org/10.1038/nchem.406
  6. Svensson, F. R.; Matson, M.; Li, M.; Lincoln, P. Biophys. Chem. 2010, 149, 102-106. https://doi.org/10.1016/j.bpc.2010.04.006
  7. Westerlund, F.; Pierard, F.; Eng, M. P.; Norden, B.; Lincoln, P. J. Phys. Chem. B. 2005, 109, 17327-17332. https://doi.org/10.1021/jp0517091
  8. Lee, B. W.; Moon, S. J.; Youn, M. R.; Kim, J. H.; Jang, H. G.; Kim, S. K. Biophys. J. 2003. 85, 3865-3871. https://doi.org/10.1016/S0006-3495(03)74801-2
  9. Poteet, S. A.; Majewski, M. B.; Breitbach, Z. S.; Griffith, C. A.; Singh, S.; Armstrong, D. W.; Wolf, M. O.; MacDonnell, F. M. J. Am. Chem. Soc. 2013, 135, 2419-2422. https://doi.org/10.1021/ja3106863
  10. Friedman, A. E. J. Am. Chem. Soc. 1990, 112, 4960-4962. https://doi.org/10.1021/ja00168a052
  11. Hiort, C.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 1993, 115, 3448-3454. https://doi.org/10.1021/ja00062a007
  12. Smith, J. A.; George, M. W.; Kelly, J. M. T. Coord. Chem. Rev. 2011, 255, 2666-2675. https://doi.org/10.1016/j.ccr.2011.04.007
  13. Elias, B. Chem. Eur. J. 2007, 14, 369-375.
  14. Barton, J. K.; Olmon, E. D.; Sontz, P. A. Coord. Chem. Rev. 2011, 255, 619-634. https://doi.org/10.1016/j.ccr.2010.09.002
  15. Eriksson, M.; Leijon, M.; Hiort, C.; Nordn, B.; Graslund, A. Biochemistry 1994, 33, 5031-5040. https://doi.org/10.1021/bi00183a005
  16. Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1993, 32, 2573-2584. https://doi.org/10.1021/bi00061a015
  17. Rehmann, J. P.; Barton, J. K. Biochemistry 1990, 29, 1701-1709. https://doi.org/10.1021/bi00459a006
  18. Haworth, I. S.; Elcock, A. H.; Freeman, J.; Rodger, A.; Richards, W. G. J. Biomol. Str. Dyn. 1991, 99, 23-44.
  19. Jenkins, Y.; Barton, J. K. J. Am. Chem. Soc. 1992, 114, 8736-8738. https://doi.org/10.1021/ja00048a077
  20. Jenkins, Y.; Freidman, A. E.; Turro, N. J.; Barton, J. K. Biochemistry 1992, 31, 10809. https://doi.org/10.1021/bi00159a023
  21. Dupureur, C. M.; Barton, J. K. J. Am. Chem. Soc. 1994, 116, 10286-10287. https://doi.org/10.1021/ja00101a053
  22. Haq, I.; Lincoln, P.; Suh, D.; Nordén, B.; Chowdhry, B. Z.; Chaires, J. B. J. Am. Chem. Soc. 1995, 117, 4788-4796. https://doi.org/10.1021/ja00122a008
  23. Lincoln, P.; Broo, A.; Nordén, B. J. Am. Chem. Soc. 1996, 118, 2644-2653. https://doi.org/10.1021/ja953363l
  24. Choi, S. D.; Kim, M. S.; Kim, S. K.; Lincoln, P.; Tuite, E.; Norden, B. Biochemistry 1997, 36, 214-223. https://doi.org/10.1021/bi961675a
  25. Niyazi, H.; Hall, J. P.; O'Sullivan, K.; Winter, G.; Sorensen, T.; Kelly, J. M.; Cardin, C. J. Nature Chem. 2012, 4, 621-628. https://doi.org/10.1038/nchem.1397
  26. Smith, J. A.; Morgan, J. L.; Turley, A. G.; Collins, J. G.; Keene, F. R. Dalton Trans. 2006, 3179-3187.
  27. Chao, H.; Yuan, Y. X.; Zhou, F.; Ji, L. N.; Zhang, J. Transit. Met. Chem. 2006, 31, 465-469. https://doi.org/10.1007/s11243-006-0013-5
  28. Liu, F. R.; Wang, K. Z.; Bai, G. Y.; Zhang, Y. G.; Gao, L. H. Inorg. Chem. 2004, 43, 1799-1806. https://doi.org/10.1021/ic035109x
  29. O'Reilly, F.; Kelly, J.; Kirsch-De Mesmaeker, A. Chem. Commun. 1996, 1013-1014.
  30. Kwon, B.-H.; Choi, B.-H.; Lee, H. M.; Jang, Y. J.; Lee, J.-C.; Kim, S. K. Bull. Korean Chem. Soc. 2010, 31, 1615-1620. https://doi.org/10.5012/bkcs.2010.31.6.1615
  31. Wada, A., Kozawa, S. J. Polym. Sci. 1964, 2, 853-864.
  32. Norden, B.; Seth, S. Appl. Spectrosc. 1985, 39, 647-655. https://doi.org/10.1366/0003702854250356
  33. Norden, B.; Kubista, M.; Kurucsev, T. Q. Rev. Biophys. 1992, 25, 51-170. https://doi.org/10.1017/S0033583500004728
  34. Norden, B.; Kurucsev, T. J. Mol. Recognit. 1994, 7, 141-156. https://doi.org/10.1002/jmr.300070211
  35. Eriksson. S.; Kim, S. K.; Kubista, M.; Norden, B. Biochemistry 1993, 32, 2987-2998. https://doi.org/10.1021/bi00063a009
  36. Jung, K. S.; Kim, M. S.; Lee, G.-J.; Cho, T.-S.; Kim, S. K.; Yi, S. Y. Bull. Korean Chem. Soc. 1997, 18, 510-514.