참고문헌
- Atkinson, J.H. (1975), "Anisotropic elastic deformations in laboratory tests on undisturbed London Clay", Geotech., 25(2), 357-374. https://doi.org/10.1680/geot.1975.25.2.357
- Callisto, L. and Calabresi, G. (1998), "Mechanical behavior of a natural soft clay", Geotech., 48(4), 495-513. https://doi.org/10.1680/geot.1998.48.4.495
- Callisto, L. and Rampello, S. (2002), "Shear strength and small-strain stiffness of a natural clay under general stress conditions", Geotech., 52(8), 547-560. https://doi.org/10.1680/geot.2002.52.8.547
- Cuccovillo, T. and Coop, M.P. (1997), "The measurement of local axial strains in triaxial test using LVDTs", Geotech., 47(1), 167-171. https://doi.org/10.1680/geot.1997.47.1.167
- Fukuda, F., Mitachi, T. and Shibuya, S. (1997), "Induced anisotropy appeared in the deformation and strength of remolded clay", Soil. Found., 37(4), 139-148. https://doi.org/10.3208/sandf.37.4_139
- Gasparre, A., Nishimura, S., Minh, N.A., Coop, M.R. and Jardine, R.J. (2007), "The stiffness of natural London Clay", Geotech., 57(1), 33-47. https://doi.org/10.1680/geot.2007.57.1.33
- Gramatikopoulou, A., Zdravkovic, L. and Potts, D.M. (2007), "The effect of the yield and plastic potential deviatoric surfaces on the failure height of an embankment", Geotech., 57(10), 795-806. https://doi.org/10.1680/geot.2007.57.10.795
- Hight, D.W., Gens, A. and Symes, M.J. (1983), "The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils", Geotech., 33(4), 355-383. https://doi.org/10.1680/geot.1983.33.4.355
- Hird, C.C. and Yung, P.C.Y. (1989), "The Use of Proximity Transducers for Local Strain Measurements in Triaxial Tests", Geotech. Test. J. ASTM, 12(4), 292-296. https://doi.org/10.1520/GTJ10987J
- Kirkgard, M.M. and Lade, P.V. (1991), "Anisotropy of Normally Consolidated San Francisco Bay Mud", Geotech. Test. J. ASTM, 14(3), 231-246. https://doi.org/10.1520/GTJ10568J
- Kirkgard, M.M. and Lade, P.V. (1993), "Anisotropic three-dimensional behavior of a normally consolidated clay", Can. Geotech. J., 30(5), 848-858. https://doi.org/10.1139/t93-075
- Kumruzzaman, Md. and Yin, J.H. (2010), "Influence of principal stress direction and intermediate principal stress on the stress-strain-strength behaviour of completely decomposed granite", Can. Geotech. J., 47(2), 164-179. https://doi.org/10.1139/T09-079
- Kurukulasuriya, L.C., Oda, M. and Kazama, H. (1999), "Anisotropy of undrained shear strength of an over-consolidated soil by triaxial and plane strain tests", Soil. Found., 39(1), 21-29.
- Kuwano, J. and Bhattarai, B.N. (1989), "Deformation characteristics of Bangkok Clay under three dimensional stress conditions", Geotech. Eng. SEAGS, 20(2), 111-137.
- Lings, M.L. (2001), "Drained and undrained anisotropic elastic stiffness parameters", Geotech., 51(6), 555-565. https://doi.org/10.1680/geot.2001.51.6.555
- Nishimura, S., Minh, N.A. and Jardine, R.J. (2007), "Shear strength anisotropy of natural London Clay", Geotech., 57(1), 49-62. https://doi.org/10.1680/geot.2007.57.1.49
- Phien-Wej, N., Giao, P.H. and Nutalaya, P. (2006), "Land subsidence in Bangkok, Thailand", Eng. Geol., 82(4), 187-201. https://doi.org/10.1016/j.enggeo.2005.10.004
- Potts, D.M. and Zdravkovic, L. (1999), Finite Element Analysis in Geotechnical Engineering: Theory, Thomas Telford.
- Prashant, A. and Penumadu, S. (2004), "Effect of intermediate principal stress on overconsolidated kaolin clay", J. Geotech. Geoenviron. Eng. ASCE, 130(3), 284-292. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(284)
- Prashant, A. and Penumadu, D. (2005), "A laboratory study of normally consolidated kaolin clay", Can. Geotech. J., 42(1), 27-37. https://doi.org/10.1139/t04-076
- Prashant, A. and Penumadu, S. (2007), "Effect of microfabric on mechanical behavior of kaolin clay using cubical true triaxial testing", J. Geotech. Geoenviron. Eng. ASCE, 133(4), 433-444. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(433)
- Prust, R.E., Davies, J. and Hu, S. (2005), "Pressuremeter Investigation for Mass Rapid Transit in Bangkok, Thailand", Transportation Research Record: J. Transport. Res. Board, No. 1928, 207-217.
- Ratananikom, W., Likitlersuang, S. and Yimsiri, S. (2013), "An investigation of anisotropic elastic parameters of Bangkok Clay from vertical and horizontal cut specimens", Geomech. Geoeng.: Int., 8(1), 15-27. https://doi.org/10.1080/17486025.2012.726746
- Sayao, A. and Vaid, Y.P. (1991), "A critical assessment of stress nonuniformities in hollow cylinder test specimens", Soil. Found., 31(1), 60-72.
- Seah, T.H. and Lai, K.C. (2003), "Strength and deformation behavior of Soft Bangkok Clay", Geotech. Test. J. ASTM, 26(4), 421-431.
- Shibuya, S., Tamrakar, S.B. and Theramast, N. (2001), "Geotechnical site characterization on engineering properties of Bangkok Clay", Geotech. Eng. SEAGS, 32(3), 139-151.
- Wijewickreme, D. and Vaid, Y.P. (1991), "Stress non-uniformities in hollow cylinder torsional specimens", Geotech. Test. J. ASTM, 14(4), 349-362. https://doi.org/10.1520/GTJ10203J
- Yimsiri, S. and Soga, K. (2011), "Cross-anisotropic elastic parameters of two natural stiff clays", Geotech., 61(9), 809-814. https://doi.org/10.1680/geot.9.P.072
- Yimsiri, S., Ratananikom, W. and Likitlersuang, S. (2009), "Investigation of some anisotropic character- istics of Bangkok Clay", The 17th International Conference on Soil Mechanics and Geotechnical Engineering, 17ICSMGE, Alexandria, Egypt, 1068-1071.
- Zdravkovic, L. and Jardine, R.J. (1997), "Some anisotropic stiffness characteristics of a silt under general stress conditions", Geotech., 47(3), 407-437. https://doi.org/10.1680/geot.1997.47.3.407
- Zdravkovic, L. and Jardine, R.J. (2000), "Undrained anisotropy of Ko-consolidated silt", Can. Geotech. J., 37(1), 178-200. https://doi.org/10.1139/t99-094
- Zdravkovic, L. and Jardine, R.J. (2001), "The effect on anisotropy of rotating the principal stress axes during consolidation", Geotech., 51(1), 69-83. https://doi.org/10.1680/geot.2001.51.1.69
피인용 문헌
- Long-term response of flexible pipe in sand trench due to consolidation of native clay vol.61, pp.4, 2021, https://doi.org/10.1016/j.sandf.2021.05.003
- Use of Microbially Induced Calcite Precipitation for Soil Improvement in Compacted Clays vol.7, pp.4, 2013, https://doi.org/10.1007/s40891-021-00327-1
- Improving mechanical properties and shrinkage cracking characteristics of soft clay in deep soil mixing vol.316, pp.None, 2022, https://doi.org/10.1016/j.conbuildmat.2021.125858