DOI QR코드

DOI QR Code

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra (Departement de Genie Mecanique, Faculte de Technologie, Universite Sidi Bel Abbes) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie) ;
  • Benguediab, Mohamed (Departement de Genie Mecanique, Faculte de Technologie, Universite Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie)
  • 투고 : 2013.03.20
  • 심사 : 2013.07.30
  • 발행 : 2013.10.25

초록

In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

키워드

참고문헌

  1. Ameur, M., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "A new trigonometric shear deformation theory for bending analysis of functionally graded plates resting on elastic foundations", KSCE J. Civil Eng., 15(8), 1405-1414. https://doi.org/10.1007/s12205-011-1361-z
  2. Bouazza, M., Tounsi, A., Adda-Bedia, E.A. and Megueni, A. (2010), "Thermoelastic stability analysis of functionally graded plates: An analytical approach", Comput. Mater. Sci.., 49(4), 865-870. https://doi.org/10.1016/j.commatsci.2010.06.038
  3. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct. Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  4. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  5. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  6. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda Bedia, E.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct. Int. J., 13(1), 91-107. https://doi.org/10.12989/scs.2012.13.1.091
  7. Houari, M.S.A, Benyoucef, S., Mechab, I., Tounsi, A. and Adda bedia, E.A. (2011), "Two variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates", J. Therm. Stresses, 34(4), 315-334. https://doi.org/10.1080/01495739.2010.550806
  8. Javaheri, R. and Eslami, M.R. (2002a), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626
  9. Javaheri, R. and Eslami, M.R. (2002b), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stresses, 25(7), 603-625. https://doi.org/10.1080/01495730290074333
  10. Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation", Arch. Appl. Mech., 82(7), 891-905. https://doi.org/10.1007/s00419-011-0599-8
  11. Liew, K.M., Yang, J. and Kitipornchai, S. (2004), "Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties", J. Appl. Mech. Trans. ASME., 71(6), 839-850. https://doi.org/10.1115/1.1795220
  12. Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68(4), 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010
  13. Matsunaga, H. (2009), "Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory", Compos. Struct., 90(1), 76-86. https://doi.org/10.1016/j.compstruct.2009.02.004
  14. Merdaci, S., Tounsi, A., Houari, M.S.A, Mechab, I., Hebali, H. and Benyoucef, S. (2011), "Two new refined shear displacement models for functionally graded sandwich plates", Arch. Appl. Mech., 81(11), 1507-1522. https://doi.org/10.1007/s00419-010-0497-5
  15. Na, K.-S. and Kim, J.-H. (2006), "Three-dimensional thermomechanical buckling analysis for functionally graded composite plates", Compos. Struct., 73(4), 413-422. https://doi.org/10.1016/j.compstruct.2005.02.012
  16. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  17. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Methods Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  18. Sallai, B.O., Tounsi, A., Mechab, I., Bachir, B.M., Meradjah, M. and Adda Bedia E.A. (2009), "A theoretical analysis of flexional bending of Al/$Al_{2}O_{3}$ S-FGM thick beams", Computat. Mater. Sci.., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
  19. Samsam Shariat, B.A. and Eslami, M.R. (2005), "Buckling of functionally graded plates under in-plane compressive loading based on the first order plate theory", Proceeding of the Fifth International Conference on Composite Science and Technology, Sharjah, UAE, February.
  20. Samsam Shariat, B.A. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78(3), 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001
  21. Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11.
  22. Wu, L. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64(2), 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004
  23. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  24. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1 - deflection and stresses, Part 2 - buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5224-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.015
  25. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012

피인용 문헌

  1. Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.753
  2. An analytical method for free vibration analysis of functionally graded sandwich beams vol.23, pp.1, 2016, https://doi.org/10.12989/was.2016.23.1.059
  3. Thermal buckling analysis of functionally graded sandwich plates vol.41, pp.2, 2018, https://doi.org/10.1080/01495739.2017.1393644
  4. Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.093
  5. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  6. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
  7. Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories vol.18, pp.1, 2015, https://doi.org/10.12989/scs.2015.18.1.187
  8. Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions vol.225, pp.9, 2014, https://doi.org/10.1007/s00707-014-1093-5
  9. An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions vol.16, pp.3, 2014, https://doi.org/10.1177/1099636214526852
  10. Thermal Buckling Response of Functionally Graded Plates with Clamped Boundary Conditions vol.38, pp.6, 2015, https://doi.org/10.1080/01495739.2015.1015900
  11. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  12. A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position vol.8, pp.3, 2015, https://doi.org/10.12989/gae.2015.8.3.305
  13. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0322-2
  14. Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory vol.48, pp.4, 2013, https://doi.org/10.12989/sem.2013.48.4.547
  15. Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review vol.120, 2015, https://doi.org/10.1016/j.compstruct.2014.09.070
  16. On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
  17. Refined plate theory for bending analysis of a HSLA steel plate under 3D temperature field vol.250, 2015, https://doi.org/10.1016/j.amc.2014.10.122
  18. A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
  19. Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
  20. A new higher-order shear and normal deformation theory for functionally graded sandwich beams vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.521
  21. A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates vol.18, pp.1, 2015, https://doi.org/10.12989/scs.2015.18.1.235
  22. Influence of the porosities on the free vibration of FGM beams vol.21, pp.3, 2015, https://doi.org/10.12989/was.2015.21.3.273
  23. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
  24. Equivalent single layer theories for composite and sandwich structures: A review vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.090
  25. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations vol.13, pp.1, 2017, https://doi.org/10.1007/s10999-015-9318-x
  26. Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations vol.56, pp.1, 2015, https://doi.org/10.12989/sem.2015.56.1.085
  27. A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
  28. Higher order refined computational models for the stability analysis of FGM plates – Analytical solutions vol.47, 2014, https://doi.org/10.1016/j.euromechsol.2014.06.003
  29. A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations vol.17, pp.2, 2015, https://doi.org/10.1177/1099636214554904
  30. Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position vol.39, pp.10, 2016, https://doi.org/10.1080/01495739.2016.1215726
  31. Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.443
  32. Non-linear multi-mode buckling of non-symmetric FML/FGM thin-walled columns with open cross-sections under compression vol.167, 2017, https://doi.org/10.1016/j.compstruct.2017.01.072
  33. A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
  34. A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
  35. A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
  36. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2013, https://doi.org/10.12989/sem.2017.63.5.585
  37. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2013, https://doi.org/10.12989/gae.2017.13.3.385
  38. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2013, https://doi.org/10.12989/sem.2017.64.4.391
  39. Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.595
  40. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2013, https://doi.org/10.12989/sem.2019.69.5.511
  41. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2013, https://doi.org/10.12989/scs.2019.33.5.699
  42. Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2013, https://doi.org/10.12989/scs.2019.33.6.805
  43. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
  44. Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers vol.36, pp.1, 2013, https://doi.org/10.12989/scs.2020.36.1.047
  45. Vibration and thermal buckling analyses of three-layered centrosymmetric piezoelectric microplates based on the modified consistent couple stress theory vol.26, pp.15, 2013, https://doi.org/10.1177/1077546320924273
  46. Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2013, https://doi.org/10.12989/scs.2020.37.6.711
  47. Buckling treatment of piezoelectric functionally graded graphene platelets micro plates vol.38, pp.3, 2021, https://doi.org/10.12989/scs.2021.38.3.337