DOI QR코드

DOI QR Code

Expression of CD133, CD44, CK7, and OCT4 in Animal Cancers

  • Park, Jong-Ho (College of Veterinary Medicine, Chungnam National University) ;
  • Cho, Eun-Sang (College of Veterinary Medicine, Chungnam National University) ;
  • Ryu, Si-Yun (College of Veterinary Medicine, Chungnam National University) ;
  • Jung, Ju-Young (College of Veterinary Medicine, Chungnam National University) ;
  • Son, Hwa-Young (College of Veterinary Medicine, Chungnam National University)
  • Received : 2013.02.27
  • Accepted : 2013.05.16
  • Published : 2013.06.30

Abstract

Cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumorinitiating cells. These cells possess the ability to self-renew and proliferate, and are thus able to form the tumor. In the present study cells that correspond to cancer stem cells in mammary and liver cancers in animals were identified by the expression of CD133, CD44, CK7, and OCT4 using immunochemistry. As a result, we found with CD133+ and CD44+ cancer stem cell-like phenotypes in mouse and canine hepatocellular carcinoma and canine mammary gland tumors. However, CK7+ and OCT4+ cells were not identified in animal mammary and liver cancer. CD133+ and CD44+ cells are wellknown stem cell lines and play key roles in development and metastasis in human cancer. These findings suggest that cancer stem cells are involved in animal tumorigenesis and may provide insight into mechanisms in cancer development as well as cancer diagnostics.

Keywords

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100, 3983-3988. https://doi.org/10.1073/pnas.0530291100
  2. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemo-resistance. Cell Cycle 2009, 8, 158-166. https://doi.org/10.4161/cc.8.1.7533
  3. Atlasi Y, Mowla SJ, Ziaee SAM, Bahrami AR. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 2007, 120, 1598-1602. https://doi.org/10.1002/ijc.22508
  4. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3, 730-737. https://doi.org/10.1038/nm0797-730
  5. Braicu C, Burz C, Berindan-Neagoe I, Balacescu O, Graur F, Cristea V, Irimie A. Hepatocellular Carcinoma: tumorigenesis and prediction markers. Gastro Res 2009, 2, 191-199.
  6. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005, 65, 10946-10951. https://doi.org/10.1158/0008-5472.CAN-05-2018
  7. Csoka K, Nygren P, Graf W, Pahlman L, Glimelius B, Larsson R. Selective sensitivity of solid tumors to suramin in primary cultures of tumor cells from patients. Int J Cancer 1995, 63, 356-360. https://doi.org/10.1002/ijc.2910630309
  8. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007, 104, 10158-10163. https://doi.org/10.1073/pnas.0703478104
  9. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008, 15, 504-514. https://doi.org/10.1038/sj.cdd.4402283
  10. Fuchs E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 2009, 137, 811-819. https://doi.org/10.1016/j.cell.2009.05.002
  11. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996, 183, 1797-1806. https://doi.org/10.1084/jem.183.4.1797
  12. Hart AH, Hartley L, Parker K, Ibrahim M, Looijenga LHJ, Pauchnik M, Chow CW, Robb L. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 2005, 104, 2092-2098. https://doi.org/10.1002/cncr.21435
  13. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008, 8, 48. https://doi.org/10.1186/1471-2407-8-48
  14. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR. Increased expression of stem cell markers in malignant melanoma. Mod Pathol 2007, 20, 102-107. https://doi.org/10.1038/modpathol.3800720
  15. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 2005, 8, 723-729. https://doi.org/10.1038/nn1473
  16. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res 2007, 67, 1030-1037. https://doi.org/10.1158/0008-5472.CAN-06-2030
  17. Liu Q, Li JG, Zheng XY, Jin F, Dong HT. Expression of CD133, PAX2, ESA, and GPR30 in invasive ductal breast carcinomas. Chin Med J (Engl) 2009, 122, 2763-2769
  18. Matin MM, Walsh JR, Gokhale PJ, Draper JS, Bahrami AR, Morton I, Moore HD, Andrews PW. Specific knockdown of Oct4 and ${\beta}2$-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 2004, 22, 659-668. https://doi.org/10.1634/stemcells.22-5-659
  19. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997, 90, 5013-5021.
  20. Monroe MM, Anderson EC, Clayburgh DR, Wong MH. Cancer stem cells in head and neck squamous cell carcinoma. J Oncol 2011, 2011, 762780.
  21. Ngan KW, Jung SM, Lee LY, Chuang WY, Yeh CJ, Hsieh YY. Immunohistochemical expression of OCT4 in primary central nervous system germ cell tumours. J Clin Neurosci 2008, 15, 149-152. https://doi.org/10.1016/j.jocn.2006.08.013
  22. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445, 106-110. https://doi.org/10.1038/nature05372
  23. Paltian V, Alldinger S, Baumgartner W, Wohlsein P. Expression of CD44 in canine mammary tumours. J Comp Pathol 2009, 141, 237-247. https://doi.org/10.1016/j.jcpa.2009.05.007
  24. Pekovic V, Hutchison CJ. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 2008, 213, 5-25. https://doi.org/10.1111/j.1469-7580.2008.00928.x
  25. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007, 104, 973-978. https://doi.org/10.1073/pnas.0610117104
  26. Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR. Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int 2006, 6, 25. https://doi.org/10.1186/1475-2867-6-25
  27. Regauer S, Beham A, Mannweiler S. CK7 expression in carcinomas of the Waldeyer's ring area. Hum Pathol 2000, 31, 1096-1101. https://doi.org/10.1053/hupa.2000.6279
  28. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004, 117, 3539-3545. https://doi.org/10.1242/jcs.01222
  29. Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Kalhs P, Marian B, Wrba F, Zielinski CC, Valent P. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 2006, 107, 2512-2520. https://doi.org/10.1002/cncr.22277
  30. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63, 5821-5828.
  31. Sotomayor P, Godoy A, Smith GJ, Huss WJ. Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 2009, 69, 401-410. https://doi.org/10.1002/pros.20895
  32. Su YC, Hsu YC, Chai CY. Role of TTF-1, CK20, and CK7 immunohistochemistry for diagnosis of primary and secondary lung adenocarcinoma. Kaohsiung J Med Sci 2006, 22, 14-19. https://doi.org/10.1016/S1607-551X(09)70214-1
  33. Van Driel M, Gunthert U, van Kessel AC, Joling P, Stauder R, Lokhorst HM, Bloem AC. CD44 variant isoforms are involved in plasma cell adhesion to bone marrow stromal cells. Leukemia 2002, 16, 135-143. https://doi.org/10.1038/sj.leu.2402336
  34. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007, 120, 1444-1450. https://doi.org/10.1002/ijc.22476
  35. Zhang H, Li SY. Research progression of CD133 as a marker of cancer stem cells. Chin J Cancer 2010, 29, 243-247. https://doi.org/10.5732/cjc.009.10587