DOI QR코드

DOI QR Code

Fast Sequential Optimal Normal Bases Multipliers over Finite Fields

유한체위에서의 고속 최적정규기저 직렬 연산기

  • 김용태 (광주교육대학교 수학교육과)
  • Received : 2013.06.13
  • Accepted : 2013.08.23
  • Published : 2013.08.30

Abstract

Arithmetic operations over finite fields are widely used in coding theory and cryptography. In both of these applications, there is a need to design low complexity finite field arithmetic units. The complexity of such a unit largely depends on how the field elements are represented. Among them, representation of elements using a optimal normal basis is quite attractive. Using an algorithm minimizing the number of 1's of multiplication matrix, in this paper, we propose a multiplier which is time and area efficient over finite fields with optimal normal basis.

유한체 연산은 부호이론과 암호학에 널리 쓰이고 있으므로, 유한체 연산의 복잡도를 낮출 수 있는 연산기가 절실하게 필요하다. 그런데 연산기의 복잡도는 유한체의 원소를 표현하는 방법에 달려있다. 복잡도를 줄이기 위해서, 지금까지 알려진 원소를 표현하는 가장 좋은 방법이 최적정규기저를 사용하는 것이다. 본 논문에서는 최적정규기저로 표현된 원소의 곱셈시에 구축되는 곱셈행렬의 1의 개수를 최소화하는 알고리즘을 개발하여 시간과 공간을 최소화하는 곱셈기를 제안하고자 한다.

Keywords

References

  1. J. Massey, J. Omura, "Computational methd and apparatus for finite field arithmetic", US Patent No. 4587627, 1986.
  2. G. Agnew, R. Mullin, S. Vanstone, "An implementation for a fast public key cryptosystem", Journal of Cryptography, Vol. 3, pp. 63-79, 1999.
  3. Y. Kim, "Efficient Serial Gaussian Normal Basis Multipliers over Binary Extension Fields", The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 4, No. 3, pp. 197-203, 2009.
  4. A. Reyhani-Maslleh and M.H. Hasan, "Efficient Digit Serial Normal Basis Multiplier over Binary Extension Fields", ACM Trans. on Embedded Systems and Security Vol. 3, pp. 575-592, 2004. https://doi.org/10.1145/1015047.1015053
  5. S.J. Cho, J.G. Kim, U.S. Choi, S.T. Kim, "Cross-correlation of linear and nonlinear GMW-sequences generated by the same primitive polynomial on ", The Korea Institute of Electronic Communication Sciences 2011 Spring Conference Vol. 5, No. 1, pp. 155-158, 2011.
  6. Han-Doo Kim, Sung-Jin Cho, Min-Jeong Kwon, Hyun-Ju An, " A study on the cross-correlation function of extended Zeng sequences", The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 7, No. 1, pp. 61-67, 2012.
  7. S. Gao Jr. and H.W. Lenstra, "Optimal normal bases", Designs, Codes and Cryptology, Vol. 2, pp. 315-323, 1992. https://doi.org/10.1007/BF00125200
  8. Y. Kim, "A Fast Multiplier of Composite fields over finite fields", The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 6, No. 3, pp. 389-395, 2011.
  9. ANSI, "Public Key Cryptology for the Financial Service Industry : The Elliptic Curve Digital Signature Algorithm(ECDSA)", ANSI x9.62, 1998.
  10. NIST, Digital Signature Standard, FIPS Publication, 186-2, 2000.
  11. U.S. Choi, S.J. Cho, "Design of Binary Sequence with optimal Cross-correlation Values", The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 6, No. 4, pp. 539-544, 2011.