# SOME EXAMPLES OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN $\mathbb{P}^{2}$ HAVING GENERIC HILBERT FUNCTION 

Yong Su Shin*


#### Abstract

In [20] and [22], the author proved that the union of two linear star-configurations in $\mathbb{P}^{2}$ of type $t \times s$ with $3 \leq t \leq 10$ and $t \leq s$ has generic Hilbert function. In this paper, we prove that the union of two linear star-configurations in $\mathbb{P}^{2}$ of type $t \times s$ with $3 \leq t$ and $\binom{t}{2}-1 \leq s$ has also generic Hilbert function.


## 1. Introduction

Let $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be an $(n+1)$-variable polynomial ring and $A=R / I$ where $I$ is a homogeneous ideal in $R$. Then $A=\bigoplus_{i=0}^{\infty} A_{i}$ is also a graded ring. In this situation the Hilbert function of $A$ is the function

$$
\mathbf{H}(A, i):=\operatorname{dim}_{\mathbb{k}} A_{i}=\operatorname{dim}_{\mathbb{k}} R_{i}-\operatorname{dim}_{\mathbb{k}} I_{i}=\binom{i+n}{n}-\operatorname{dim}_{\mathbb{K}} I_{i} .
$$

If $I:=I_{\mathbb{X}}$ is the ideal of a subscheme $\mathbb{X}$ in $\mathbb{P}^{n}$, then we denote the Hilbert function of $\mathbb{X}$ by

$$
\mathbf{H}_{\mathbb{X}}(t)=\mathbf{H}\left(R / I_{\mathbb{X}}, t\right)
$$

(see $[1,2,3,6,7,8,9,10,11,12,13])$. In particluar, If $\mathbb{X}$ is a subscheme in $\mathbb{P}^{2}$ and

$$
\mathbf{H}_{\mathbb{X}}(d)=\min \left\{\binom{d+2}{2}, \operatorname{deg}(\mathbb{X})\right\}
$$

for every $d \geq 0$, then we say that $\mathbb{X}$ has generic Hilbert function.
In this paper, we study the union of two star-configurations in $\mathbb{P}^{2}$ defined by general forms (see also [2, 20, 21, 22]). In [21], the author found conditions for a star-configuration in $\mathbb{P}^{2}$ to have generic Hilbert function based on the degrees of these general forms. In [2, 21], the

[^0]authors also found conditions when a graded Artinian ring $R /\left(I_{\mathbb{X}}+I_{\mathbb{Y}}\right)$ has the Weak Lefschetz property for two star-configurations $\mathbb{X}$ and $\mathbb{Y}$ in $\mathbb{P}^{2}$ (see also $\left.[14,15,16,17,18,19]\right)$.

The following proposition in [3] is about the ideal of general forms in $R$, which leads to the definition of a star-configuration and a linear star-configuration in $\mathbb{P}^{n}$.

Proposition 1.1. [3, Proposition 2.1] Let $F_{1}, F_{2}, \ldots, F_{s}$ be general forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ with $s \geq 3$. Then

$$
\bigcap_{1 \leq i<j \leq s}\left(F_{i}, F_{j}\right)=\left(\tilde{F}_{1}, \ldots, \tilde{F}_{s}\right), \text { where } \tilde{F}_{i}=\frac{\prod_{j=1}^{s} F_{j}}{F_{i}} \text { for } i=1, \ldots, s
$$

The variety $\mathbb{X}$ in $\mathbb{P}^{n}$ of the ideal $\bigcap_{1 \leq i<j \leq s}\left(F_{i}, F_{j}\right)=\left(\tilde{F}_{1}, \ldots, \tilde{F}_{s}\right)$ in Proposition 1.1 is called a star-configuration in $\mathbb{P}^{n}$ of type $s$. Furthermore, if the $F_{i}$ are all general linear forms in $R$, the star-configuration $\mathbb{X}$ is called a linear star-configuration in $\mathbb{P}^{n}$.

In this paper, if $\mathbb{X}:=\mathbb{X}^{(t, s)}$ is the union of two linear star-configurations $\mathbb{X}_{1}$ and $\mathbb{X}_{2}$ in $\mathbb{P}^{2}$ of types $t$ and $s$ (type $t \times s$ for short), then $\mathbb{X}$ has generic Hilbert function for $3 \leq t$ and $\binom{t}{2}-1 \leq s$. Moreover, we also show that $\sigma(\mathbb{X})=s$ for such $t$ and $s$, where $\sigma(\mathbb{X}):=\min \left\{d \mid \mathbf{H}_{\mathbb{X}}(d-1)=\mathbf{H}_{\mathbb{X}}(d)\right\}$.

In Section 3, we propose some questions for further study.

## 2. The union of two linear star-configurations in $\mathbb{P}^{2}$

Before we start to prove the main theorem, we introduce some notations for convenience. Let $L_{1}, \ldots, L_{s-1}, L_{s}$, and $M_{1}, \ldots, M_{t}$ be general linear forms for $s \geq 3$ and $t \geq 3$, respectively. Define
$\mathbb{X}_{1}=\mathbb{Y}_{1}$ is a linear star-configuration in $\mathbb{P}^{2}$ defined by $M_{1}, \ldots, M_{t}$, $\mathbb{X}_{2}$ is a linear star-configuration in $\mathbb{P}^{2}$ defined by $L_{1}, \ldots, L_{s-1}, L_{s}$, $\mathbb{Y}_{2} \subseteq \mathbb{X}_{2}$ is a linear star-configuration in $\mathbb{P}^{2}$ defined by $L_{1}, \ldots, L_{s-1}$. $\mathbb{Y}:=\mathbb{X}^{(t, s-1)}:=\mathbb{Y}_{1} \cup \mathbb{Y}_{2}, \mathbb{X}:=\mathbb{X}^{(t, s)}:=\mathbb{X}_{1} \cup \mathbb{X}_{2}$, and $G_{s-1}:=L_{1} \cdots L_{s-1}$, respectively.
The first idea is that if $\mathbb{X}^{\prime}$ is the union of two finite sets of points defined by linear forms $M_{1}, \ldots, M_{t}$ and $L_{1}, L_{2}, \ldots, L_{s}$ in $R$ (not necessarily general), respectively, then the points in $\mathbb{X}$ are more general than the points in $\mathbb{X}^{\prime}$. This implies for every $i \geq 0$ we get

$$
\mathbf{H}_{\mathbb{X}^{\prime}}(i) \leq \mathbf{H}_{\mathbb{X}}(i) .
$$

The second idea is using Bezout's Theorem in $\mathbb{P}^{2}$ to find the union $\mathbb{X}^{\prime}$ of two sets of points defined by linear forms $M_{1}, \ldots, M_{t}$ and $L_{1}, L_{2}, \ldots, L_{s}$
in $R$, respectively, such that

$$
\mathbf{H}_{\mathbb{X}}(i)=\mathbf{H}_{\mathbb{X}^{\prime}}(i)=\min \left\{|\mathbb{X}|,\binom{i+2}{2}\right\} \quad \text { for some } \quad i \geq 0
$$

In other words, if a form $F$ of degree $d$ in $R$ vanishes on $(d+1)$-points on a line defined by a linear form $M$ in $R$, then $F$ is divided by a linear form $M$. Throughout this section, we shall not distinguish $\mathbb{X}$ from $\mathbb{X}^{\prime}$ for convenience.

Proposition 2.1. With notation as above, $\mathbb{X}:=\mathbb{X}^{(t, s)}$ has generic Hilbert function and $\sigma(\mathbb{X})=s$ for $s \geq\binom{ t}{2}$ and $t \geq 3$.

Proof. We shall prove this by induction on $s$. First, let $s=\binom{t}{2}$, and assume that $\mathbb{X}:=\mathbb{X}_{1} \cup \mathbb{X}_{2}$ where $\mathbb{X}_{1}$ and $\mathbb{X}_{2}$ are linear star-configurations in $\mathbb{P}^{2}$ defined by general linear forms $M_{1}, \ldots, M_{t}$ and $L_{1}, \ldots, L_{s}$, respectively. Let $\mathbb{X}_{1}:=\left\{Q_{1}, \ldots, Q_{s}\right\}$. Without loss of generality, we may assume that $L_{i}$ vanishes on a point $Q_{i}$ for $i=1, \ldots, s-1$. If $F \in\left(I_{\mathbb{X}}\right)_{s-1}$ then, by Bezóut's Theorem,

$$
F=\alpha L_{1} \cdots L_{s-1}
$$

for some $\alpha \in k$. Moreover, since $F$ also vanishes on the point $Q_{s}$, which none of $L_{1}, \ldots, L_{s-1}$ vanishes, we get that $F=0$, that is , $\left(I_{\mathbb{X}}\right)_{s-1}=0$. Hence

$$
\mathbf{H}\left(R / I_{\mathbb{X}}, s-1\right)=\binom{s+1}{2}=\binom{s}{2}+s=\binom{s}{2}+\binom{t}{2}=\operatorname{deg}(\mathbb{X}),
$$

and so $\mathbb{X}$ has generic Hilbert function as

$$
\begin{array}{lllllllll}
\mathbf{H}_{\mathbb{X}} & : & 1 & \binom{3}{2} & \cdots & \binom{(s-3)+2}{2} & \binom{(s-2)+2}{2} & \begin{array}{c}
(s-1)+2 \\
2 \\
\operatorname{deg}(\mathbb{X})
\end{array} & \binom{(s-1)+2}{2}
\end{array} \rightarrow,
$$

and $\sigma(\mathbb{X})=s$, as we wished.
Now suppose $s>\binom{t}{2}$. Let $\mathbb{Y}:=\mathbb{X}^{(t, s-1)}$ be the union of two linear star-configurations in $\mathbb{P}^{2}$ defined by linear forms $M_{1}, \ldots, M_{t}$ and $L_{1}, \ldots, L_{s-1}$, respectively. Now we consider the following equations:

| $\mathbf{H}\left(R / I_{\mathbb{X}},-\right)$ | 1 | $\binom{1+2}{2}$ | ${ }^{(s-2)-\text { nd }}$ | $\binom{s}{2}+\binom{t}{2}$ | $\rightarrow$, |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{H}\left(R / I_{\mathbb{Y}},-\right)$ | 1 | $\binom{1+2}{2}$ | $\binom{s-1}{2}+\binom{t}{2}$ | $\binom{s-1}{2}+\binom{t}{2}$ | $\rightarrow$, |
| $\mathbf{H}\left(R /\left(L_{s}, G_{s-1}\right),-\right)$ | 1 | 2 | $s-1$ | $s-1$ | $\rightarrow$, |
| $\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L_{s}, G_{s-1}\right),-\right)$ | 1 | 2 | - | 0 | $\rightarrow$, |
| $\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L_{s}\right),-\right)$ | 1 | 2 | $\binom{t}{2}$ | 0 | $\rightarrow$. |

Since $\operatorname{deg} G_{s-1}=s-1$, we have

$$
\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L_{s}, G_{s-1}\right), s-2\right)=\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L_{s}\right), s-2\right)=\binom{t}{2},
$$

and thus

$$
\begin{aligned}
& \mathbf{H}\left(R / I_{\mathbb{X}}, s-2\right) \\
& =\mathbf{H}\left(R / I_{\mathbb{Y}}, s-2\right)+\mathbf{H}\left(R /\left(L_{s}, G_{s-1}\right), s-2\right)-\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L_{s}, G_{s-1}\right), s-2\right) \\
& =\binom{(s-3)+2}{2}+\binom{t}{2}+(s-1)-\binom{t}{2}=\binom{(s-3)+2}{2}+(s-1) \\
& =\binom{(s-2)+2}{2} .
\end{aligned}
$$

This means that $\mathbb{X}$ has generic Hilbert function as

$$
\begin{aligned}
& \mathbf{H}_{\mathbb{X}}
\end{aligned}: \begin{array}{llllll}
1 & \binom{1+2}{2} & \cdots & \binom{(s-3)+2}{2} & \binom{(s-2)+2}{2} & \binom{s}{2}+\binom{t}{2}
\end{array}\binom{s}{2}+\binom{t}{2} \quad \rightarrow,
$$ and $\sigma(\mathbb{X})=s$, which completes the proof.

Corollary 2.2. With notation as above, $\mathbb{X}:=\mathbb{X}^{(t, s-1)}$ has generic Hilbert function and $\sigma(\mathbb{X})=s$ for $s=\binom{t}{2}$ and $t \geq 3$.

Proof. Note that, by Proposition $2.1, \mathbb{Z}:=\mathbb{X}^{(t, s)}$ has generic Hilbert function, and so we get the following equation.

$$
\begin{array}{rccccccl}
\mathbf{H}\left(R / I_{\mathbb{Z}},-\right) & : & 1 & \binom{1+2}{2} & \cdots & \binom{(s-1) \text {-st }}{2}+\binom{t}{2} & \binom{s}{2}+\binom{t}{2} & \rightarrow, \\
\mathbf{H}\left(R / I_{\mathbb{X}},-\right) & : & 1 & \binom{1+2}{2} & \cdots & \binom{s-1}{2}+\binom{t}{2} & \binom{s-1}{2}+\binom{t}{2} & \rightarrow, \\
\mathbf{H}\left(R /\left(L_{s}, G_{s-1}\right),-\right) & : & 1 & 2 & \cdots & s-1 & s-1 & \rightarrow, \\
\mathbf{H}\left(R /\left(I_{\mathbb{X}}, L_{s}, G_{s-1}\right),-\right) & : & 1 & 2 & \cdots & 0 & 0 & \rightarrow, \\
\mathbf{H}\left(R /\left(I_{\mathbb{X}}, L_{s}\right),-\right) & : & 1 & 2 & \cdots & - & 0 & \rightarrow .
\end{array}
$$

Let $F \in\left(I_{\mathbb{X}}\right)_{s-2}$ and let $\mathbb{X}_{1}:=\left\{Q_{1}, \ldots, Q_{s}\right\}$. Without loss of generality, we assume that

| $L_{1}$ | vanishes on $(s-1)$-points | $P_{1,2}, \ldots, P_{1, s-1}, Q_{1}$, |
| :--- | :---: | :---: |
| $L_{2}$ | vanishes on $(s-2)$-points | $P_{2,3}, \ldots, P_{2, s-1}, Q_{2}$, |
|  | $\vdots$ |  |
| $L_{t-1}$ | vanishes on $(s-t+1)$-points | $P_{t-1, t}, \ldots, P_{t-1, s-1}, Q_{t-1}$, |
|  | $\vdots$ |  |
| $L_{s-3}$ | vanishes on 3-points | $P_{s-3, s-2}, P_{s-3, s-1}, Q_{s-3}$, |
| $L_{s-2}$ vanishes on 2-points | $P_{s-2, s-1}, Q_{s-2}$, |  |

where $P_{i, j}$ is the point defined by two linear forms $L_{i}$ and $L_{j}$ for $i<$ $j$. Then, by Bezóut's theorem, $F=\alpha L_{1} \cdots L_{s-2}$. Moreover, since $F$ has to vanish on two more points $Q_{s-1}$ and $Q_{s}$, we see that $F=$ 0 , that is, $\left(I_{\mathbb{X}}\right)_{s-2}=0$. It follows that $\mathbb{X}$ has generic Hilbert function

$$
\mathbf{H}\left(R / I_{\mathbb{X}},-\right) \quad: \quad \begin{array}{lllll}
1 & 3 & \cdots & \binom{(s-2)+2}{2} & \binom{s-1}{2}+\binom{t}{2} \quad\binom{s-1}{2}+\binom{t}{2} \quad \rightarrow,, ~
\end{array}
$$

and $\sigma(\mathbb{X})=s$, as we wished.

## 3. Additional comments and questions

In [4], the authors proved that the secant variety $\operatorname{Sec}_{s-1}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)$ to the variety $\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)$ of split forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is not defective for $3(s-1) \leq n$ and $2<d$ (see also [5]). Moreover, in [20], the author proved that the secant variety $\operatorname{Sec}_{1}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{2}\right)\right)$ to the variety $\operatorname{Split}_{d}\left(\mathbb{P}^{2}\right)$ of split forms in $R=\mathbb{k}\left[x_{0}, x_{1}, x_{2}\right]$ is not defective for $2<d$, which is not covered by the result of [4], calculating the Hilbert function of two linear star-configurations in $\mathbb{P}^{2}$ of type $d \times d$ with $d>2$.

In particular, in [20, 22], the author found that the union of two linear star-configurations in $\mathbb{P}^{2}$ of type $t \times s$ has generic Hilbert function for $3 \leq t \leq 10$ and $t \leq s$, and we also found that some different type of the union of two linear star-configurations in $\mathbb{P}^{2}$ has also generic Hilbert function (see Proposition 2.1 and Corollary 2.2). Hence it is natural to ask the following question.

Question 3.1. Let $\mathbb{X}_{1}$ and $\mathbb{X}_{2}$ be star-configurations in $\mathbb{P}^{2}$ defined by $s$-general forms of degrees $1 \leq d_{1} \leq \cdots \leq d_{s}$ with $3 \leq s$, respectively, and let $\mathbb{X}:=\mathbb{X}_{1} \cup \mathbb{X}_{2}$.
(a) Does $\mathbb{X}$ have generic Hilbert function in general?
(b) Does $\mathbb{X}$ have generic Hilbert function if $1 \leq d_{1}=\cdots=d_{s}$ ?
(c) Does $\mathbb{X}$ have generic Hilbert function if $1=d_{1}=\cdots=d_{s}$ ?

In fact, Question 3.1 (a) is not true in general. Here is an example.
Example 3.2. Let $L_{i}, M_{j} \in R_{1}$ for $i, j=1, \ldots, 5$ and $F, G \in R_{5}$. Assume $\mathbb{X}$ is the union of two star-configurations in $\mathbb{P}^{2}$ defined by 6 -forms $L_{1}, \ldots, L_{5}, F$ and $M_{1}, \ldots, M_{5}, G$, respectively. Then there exists one generator $L_{1} \ldots L_{5} M_{1} \ldots M_{5} \in\left(I_{\mathbb{X}}\right)_{10}$, and hence, by Proposition 1.1, the Hilbert function of $\mathbb{X}$ is of the form

$$
\mathbf{H}_{\mathbb{X}}: \begin{array}{llll}
1 & \binom{1+2}{2} & \cdots & \binom{9+2}{2}
\end{array}\binom{10+2}{2}-1 \cdots,
$$

which indicates $\mathbf{H}_{\mathbb{X}}(10)=65 \neq 70=\operatorname{deg}(\mathbb{X})$. Thus, $\mathbb{X}$ does not have generic Hilbert function.

Indeed, we can generalize Example 3.2 as follows:
Remark 3.3. Let $L_{1}, \ldots, L_{s-1}, M_{1}, \ldots, M_{s-1} \in R_{1}$ and $F, G \in R_{c}$ with $s \geq 6$ and $c \geq s-1$. Assume $\mathbb{X}$ is the union of two starconfigurations $\mathbb{X}_{1}$ and $\mathbb{X}_{2}$ in $\mathbb{P}^{2}$ defined by $s$-forms $L_{1}, \ldots, L_{s-1}, F$ and $M_{1}, \ldots, M_{s-1}, G$, respectively. Since the ideal $I_{\mathbb{X}}$ has one generator $L_{1} \cdots L_{s-1} M_{1} \cdots M_{s-1}$ in degree $d=2(s-1)$, the Hilbert function of $\mathbb{X}$
is of the form

$$
\begin{gathered}
\mathbf{H}_{\mathbb{X}}
\end{gathered}: \begin{array}{llll}
1 & \binom{1+2}{2} & \cdots & \binom{(2 s-3)+2}{2}
\end{array}\binom{2(s-1)+2}{2}-1 \quad \cdots,
$$

and hence $\mathbf{H}_{\mathbb{X}}(d)<\binom{d+2}{2}$. Moreover, since $s \geq 6$, we also have that

$$
\mathbf{H}_{\mathbb{X}}(d)<\binom{d+2}{2}<\operatorname{deg}(\mathbb{X})
$$

which follows that $\mathbb{X}$ does not have generic Hilbert function.
Note that if $\mathbb{X}$ is the union of two star-configurations in $\mathbb{P}^{2}$ defined by forms of degrees $1,1,1,1,4$, then $\mathbb{X}$ has generic Hilbert function as

$$
\mathbf{H}_{\mathbb{X}}: 1 \begin{array}{llllllllll} 
& 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36 & 44
\end{array} \rightarrow .
$$

However, we don't have any counter example to Question 3.1 (b) and (c) yet.

## References

[1] J. Ahn and Y. S. Shin, Generic Initial Ideals and Graded Artinian-level Algebra not having the Weak Lefschetz Property, J. Pure and Applied Algebra 210 (2007), 855-879.
[2] J. Ahn and Y. S. Shin, The Minimal Free Resolution of A Star-Configuration in $\mathbb{P}^{n}$ and The Weak Lefschetz Property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417.
[3] J. Ahn and Y. S. Shin, The Minimal Free Resolution of a Fat Star-configuration in $\mathbb{P}^{n}$, Algebra Colloquium, to appear.
[4] E. Arrondo and A. Bernardi, On the variety parametrizing completely decomposable polynomials, preprint.
[5] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222.
[6] M. Boij and F. Zanello, Some Algebraic Consequences of Green's Hyperplane Restriction Theorems, J. Pure Applied Algebra, 214 (2010), no. 7, 1263-1270.
[7] A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
[8] A. V. Geramita, T. Harima, and Y. S. Shin, An Alternative to the Hilbert function for the ideal of a finite set of points in $\mathbb{P}^{n}$, Illinois J. of Mathematics 45 (2001), no. 1, 1-23.
[9] A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.
10] A. V. Geramita, T. Harima, and Y. S. Shin, Decompositions in the Hilbert Function of a Set of Points in $\mathbb{P}^{n}$, Canadian J. of Math. 53 (2001), no. 5, 923-943.
[11] A. V. Geramita, T. Harima, and Y. S. Shin, Some Special Configurations of Points in $\mathbb{P}^{n}$, J. Algebra 268 (2003), no. 2, 484-518.
[12] A. V. Geramita, H. J. Ko, and Y. S. Shin, The Hilbert Function and The Minimal Free Resolution of Some Gorenstein Ideals of Codimension 4, Comm. in Algebra. 26 (1998), no. 12, 4285-4307.
[13] T. Harima, Characterization of Hilbert functions of Gorenstein Artin Algebras with the Weak Stanley property, Proc. Amer. Math. Soc. 123 (1995), 36313638.
[14] T. Harima, J. C. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99126.
[15] T. Harima and A. Wachi, Generic initial ideals, graded Betti numbers, and $k$-Lefschetz properties, Comm. Algebra 37 (2009), no. 11, 4012-4025.
[16] T. Harima and J. Watanabe, The strong Lefschetz property for Artinian algebras with non-standard grading, J. Algebra 311 (2007), no. 2, 511-537.
[17] J. Migliore and R. Miró-Roig, Ideals of General Forms and the Ubiquity of the Weak Lefschetz Property, J. Pure and App. Algebra. 182 (2003), 79-107.
[18] J. Migliore and F. Zanello, The Hilbert functions which force the weak Lefschetz property, J. Pure Appl. Algebra 210 (2007), no. 2, 465-471.
[19] J. C. Migliore and F. Zanello, The strength of the weak Lefschetz property, Illinois J. Math. 52 (2008), no. 4, 1417-1433.
[20] Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, Journal of Algebra and its Applications 11 (2012), no. 6, 1250109 (27 pages).
[21] Y. S. Shin, Star-Configurations in $\mathbb{P}^{2}$ Having Generic Hilbert Functions and The Weak-Lefschetz Property, Comm. in Algebra 40 (2012), 2226-2242.
[22] Y. S. Shin, On the Hilbert Function of the union of two linear star-configurations in $\mathbb{P}^{2}$, J. Chungcheong Math. Soc. 25 (2012), no. 3, 553-562.
*
Department of Mathematics
Sungshin Women's University
Seoul 136-742, Republic of Korea
E-mail: ysshin@sungshin.ac.kr


[^0]:    Received March 04, 2013; Accepted April 04, 2013.
    2010 Mathematics Subject Classification: Primary 13A02; Secondary 16W50.
    Key words and phrases: Hilbert function, star-configurations, linear star-configurations, generic Hilbert function.

    This paper was supported by a grant from Sungshin Women's University in 2012.

