STABILITY OF A GENERAL QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

Chang-Ju Lee* and Yang-Hi Lee**

Abstract

In this paper, we investigate the stability for the functional equation $f(x+y+z)+f(x-y)+f(x-z)-f(x-y-z)-f(x+y)-f(x+z)=0$

in non-Archimedean normed spaces.

1. Introduction

A classical question in the theory of functional equations is "when is it true that a mapping, which approximately satisfies a functional equation, must be somehow close to a solution of the equation?". This problem, called a stability problem of the functional equation, was formulated by S. M. Ulam [7] in 1940. In the next year, D. H. Hyers [2] gave a partial solution of Ulam problem for the case of an approximate additive mapping. Subsequently, his result was generalized by T. Aoki [1] for an additive mapping and by Th. M. Rassias [6] for a linear mapping with unbounded Cauchy differences.

We introduce some terminologies and notations used in the theory of non-Archimedean spaces (see [3]).

Definition 1.1. A field \mathbb{K} equipped with a function (valuation) $|\cdot|$ from \mathbb{K} into $[0, \infty)$ is called a non-Archimedean field if the function $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ satisfies the following conditions:
(i) $|r|=0$ if and only if $r=0$;
(ii) $|r s|=|r||s|$;

[^0](iii) $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in \mathbb{K}$.

Clearly, $|1|=|-1|$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.
Definition 1.2. Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean nontrivial valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow \mathbb{R}$ is a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\|(r \in \mathbb{K}, x \in X)$;
(iii) the strong triangle inequality, namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in X$ and $r \in \mathbb{K}$. The pair $(X,\|\cdot\|)$ is called a non-Archimedean space if $\|\cdot\|: X \rightarrow \mathbb{R}$ is a non-Archimedean norm on X.

Due to the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\}(n>m),
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space, we mean one in which every Cauchy sequence is convergent.

Recently, M. S. Moslehian and Th. M. Rassias [5] discussed the Hyers-Ulam stability of the Cauchy functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

and the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(x)-2 f(y)=0 \tag{1.2}
\end{equation*}
$$

in non-Archimedean normed spaces.
Now we consider the general quadratic functional equation
(1.3) $f(x+y+z)+f(x-y)+f(x-z)-f(x-y-z)-f(x+y)-f(x+z)=0$,
which solution is called a general quadratic mapping. Recently, Kim [4] and Jun et al [3] obtained a stability of the functional equation (1.3) by taking and composing an additive mapping A and a quadratic mapping Q to prove the existence of a general quadratic mapping F which is close to the given function f. In their processing, A is approximate to the odd part $\frac{f(x)-f(-x)}{2}$ of f and Q is close to the even part $\frac{f(x)+f(-x)}{2}-f(0)$ of f, respectively.

In this paper, we get a general stability result of the general quadratic functional equation (1.3) in non-Archimedean normed spaces.

2. Stability of the general quadratic functional equation

Throughout this section, we assume that X is a real linear space and Y is a complete non-Archimedean space with $|2|<1$.

For a given mapping $f: X \rightarrow Y$, we use the abbreviation

$$
\begin{aligned}
D f(x, y, z):= & f(x+y+z)+f(x-y)+f(x-z) \\
& -f(x-y-z)-f(x+y)-f(x+z)
\end{aligned}
$$

for all $x, y, z \in X$. Now, we will prove the stability of the general quadratic functional equation (1.3).

Theorem 2.1. Let $\varphi: X^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{|4|^{n}}=0(x, y, z \in X) \tag{2.1}
\end{equation*}
$$

Suppose that $f: X \rightarrow Y$ is a mapping satisfying

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \varphi(x, y, z) \quad(x, y, z \in X) \tag{2.2}
\end{equation*}
$$

Then there exists a unique general quadratic mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \lim _{n \rightarrow \infty} \max \left\{\psi_{j}(x): 0 \leq j<n\right\} \quad(x \in X) \tag{2.3}
\end{equation*}
$$

where $\psi_{j}: X \rightarrow[0, \infty)$ is defined by

$$
\begin{aligned}
\psi_{j}(x):=\max \{ & \frac{\varphi\left(2^{j-1} x, 2^{j-1} x, 2^{j} x\right)}{|2| \cdot|4|^{j+1}}, \frac{\varphi\left(2^{j-1} x, 2^{j-1} x, 2^{j-1} x\right)}{|2| \cdot|4|^{j+1}}, \\
& \frac{\varphi\left(-2^{j-1} x,-2^{j-1} x,-2^{j} x\right)}{|2| \cdot|4|^{j+1}}, \\
& \frac{\varphi\left(-2^{j-1} x,-2^{j-1} x,-2^{j-1} x\right)}{|2| \cdot|4|^{j+1}}, \frac{\varphi\left(2^{j+1} x, 2^{j} x, 2^{j} x\right)}{|2|^{j+2}}, \\
& \left.\frac{\varphi\left(2^{j} x, 2^{j+1} x, 2^{j} x\right)}{\mid 2^{j+2}}, \frac{\varphi\left(2^{j} x, 2^{j} x, 2^{j} x\right)}{|2|^{j+2}}\right\}
\end{aligned}
$$

for all $j \geq 0$. In particular, T is given by

$$
T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)+f\left(-2^{n} x\right)-2 f(0)}{2 \cdot 4^{n}}+\frac{f\left(2^{n} x\right)-f\left(-2^{n} x\right)}{2^{n+1}}+f(0)
$$

for all $x \in X$.
Proof. Let $J_{n} f: X \rightarrow Y$ be a function defined by

$$
J_{n} f(x)=\frac{f\left(2^{n} x\right)+f\left(-2^{n} x\right)-2 f(0)}{2 \cdot 4^{n}}+\frac{f\left(2^{n} x\right)-f\left(-2^{n} x\right)}{2^{n+1}}+f(0)
$$

for all $x \in X$ and $n \in \mathbb{N}$. Notice that $J_{0} f(x)=f(x)$ and
(2.4) $\left\|J_{j} f(x)-J_{j+1} f(x)\right\|$

$$
\begin{aligned}
&=\|- \frac{D f\left(2^{j-1} x, 2^{j-1} x, 2^{j} x\right)}{2 \cdot 4^{j+1}}-\frac{D f\left(2^{j-1} x, 2^{j-1} x, 2^{j-1} x\right)}{2 \cdot 4^{j+1}} \\
&-\frac{D f\left(-2^{j-1} x,-2^{j-1} x,-2^{j} x\right)}{2 \cdot 4^{j+1}} \\
&-\frac{D f\left(-2^{j-1} x,-2^{j-1} x,-2^{j-1} x\right)}{2 \cdot 4^{j+1}}+\frac{D f\left(2^{j+1} x, 2^{j} x, 2^{j} x\right)}{2^{j+2}} \\
&-\frac{D f\left(2^{j} x, 2^{j+1} x, 2^{j} x\right)}{2^{j+2}}+\frac{D f\left(2^{j} x, 2^{j} x, 2^{2} x\right)}{2^{j+2}} \| \\
& \leq \max \left\{\frac{\left\|D f\left(2^{j-1} x, 2^{j-1} x, 2^{j} x\right)\right\|}{|2| \cdot|4|^{j+1}}, \frac{\left\|D f\left(2^{j-1} x, 2^{j-1} x, 2^{j-1} x\right)\right\|}{|2| \cdot|4|^{j+1}},\right. \\
& \frac{\| D f\left(-2^{j-1} x,-2^{j-1} x,-2^{j} x \|\right)}{|2| \cdot|4|^{j+1}}, \\
& \frac{\left\|D f\left(-2^{j-1} x,-2^{j-1} x,-2^{j-1} x\right)\right\|}{|2| \cdot|4|^{j+1}}, \frac{\left\|D f\left(2^{j+1} x, 2^{j} x, 2^{j} x\right)\right\|}{|2|^{j+2}}, \\
& \leq \psi_{j}(x)\left.\frac{\left\|D f\left(2^{j} x, 2^{j+1} x, 2^{j} x\right)\right\|}{|2|^{j+2}}, \frac{\left\|D f\left(2^{j} x, 2^{j} x, 2^{j} x\right)\right\|}{|2|^{j+2}}\right\}
\end{aligned}
$$

for all $x \in X$ and $j \geq 0$. It follows from (2.1) and (2.4) that the sequence $\left\{J_{n} f(x)\right\}$ is Cauchy. Since Y is complete, we conclude that $\left\{J_{n} f(x)\right\}$ is convergent. Set

$$
T(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

Using induction one can show that

$$
\begin{equation*}
\left\|J_{n} f(x)-f(x)\right\| \leq \max \left\{\psi_{j}(x): 0 \leq j<n\right\} \tag{2.5}
\end{equation*}
$$

for all $n \in N$ and all $x \in X$. By taking n to approach infinity in (2.5) and using (2.1), one obtains (2.3). Replacing x, y, and z by $2^{n} x, 2^{n} y$, and $2^{n} z$, respectively, in (2.2) we get

$$
\begin{aligned}
\left\|D J_{n} f(x, y, z)\right\|= & \| \frac{D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)-D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2^{n+1}} \\
& \frac{+D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)+D f\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{2 \cdot 4^{n}} \|
\end{aligned}
$$

$$
\begin{aligned}
\leq \max \left\{\frac{\varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{|2|^{n+1}}, \frac{\varphi\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{|2|^{n+1}}\right. \\
\left.\frac{\varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{|2| \cdot|4|^{n}}, \frac{\varphi\left(-2^{n} x,-2^{n} y,-2^{n} z\right)}{|2| \cdot|4|^{n}}\right\}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ and using (2.1) we get
$D T(x, y, z)=0$. If T^{\prime} is another general quadratic mapping satisfying (2.3), then

$$
\begin{aligned}
T^{\prime}(x)= & \sum_{j=0}^{k-1}\left(-\frac{D T^{\prime}\left(2^{j-1} x, 2^{j-1} x, 2^{j} x\right)}{2 \cdot 4^{j+1}}-\frac{D T^{\prime}\left(2^{j-1} x, 2^{j-1} x, 2^{j-1} x\right)}{2 \cdot 4^{j+1}}\right. \\
& -\frac{D T^{\prime}\left(-2^{j-1} x,-2^{j-1} x,-2^{j} x\right)}{2 \cdot 4^{j+1}} \\
& -\frac{D T^{\prime}\left(-2^{j-1} x,-2^{j-1} x,-2^{j-1} x\right)}{2 \cdot 4^{j+1}}+\frac{D T^{\prime}\left(2^{j+1} x, 2^{j} x, 2^{j} x\right)}{2^{j+2}} \\
& \left.-\frac{D T^{\prime}\left(2^{j} x, 2^{j+1} x, 2^{j} x\right)}{2^{j+2}}+\frac{D T^{\prime}\left(2^{j} x, 2^{j} x, 2^{j} x\right)}{2^{j+2}}\right)+J_{k} T^{\prime}(x) \\
= & J_{k} T^{\prime}(x)
\end{aligned}
$$

for any $k \in N$ and so

$$
\begin{aligned}
& \left\|T(x)-T^{\prime}(x)\right\| \\
& =\lim _{k \rightarrow \infty}\left\|J_{k} T(x)-J_{k} T^{\prime}(x)\right\| \\
& \leq \lim _{k \rightarrow \infty} \max \left\{\left\|J_{k} T(x)-J_{k} f(x)\right\|,\left\|J_{k} f(x)-J_{k} T^{\prime}(x)\right\|\right\} \\
& \leq \lim _{k \rightarrow \infty}|2|^{-2 k-1} \max \left\{\left\|T\left(2^{k} x\right)-f\left(2^{k} x\right)\right\|,\left\|T\left(-2^{k} x\right)-f\left(-2^{k} x\right)\right\|,\right. \\
& \left.\qquad\left\|f\left(2^{k} x\right)-T^{\prime}\left(2^{k} x\right)\right\|,\left\|f\left(-2^{k} x\right)-T^{\prime}\left(-2^{k} x\right)\right\|\right\} \\
& \leq \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|2|^{-1} \psi_{j}(x),|2|^{-1} \psi_{j}(-x): k \leq j<n+k\right\} \\
& =0
\end{aligned}
$$

for all $x \in X$. Therefore $T=T^{\prime}$. This completes the proof of the uniqueness of T.

Corollary 2.2. Let X and Y be non-Archimedean normed spaces over \mathbb{K} with $|2|<1$. If Y is complete and for some $2<r, f: X \rightarrow Y$ satisfies the condition

$$
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
$$

for all $x, y, z \in X$. Then there exists a unique general quadratic mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq 3|2|^{-3-r} \theta\|x\|^{r} \tag{2.6}
\end{equation*}
$$

Proof. Let $\varphi(x, y, z)=\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$. Since $|2|<1$ and $r-2>0$,

$$
\lim _{n \rightarrow \infty}|4|^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)=\lim _{n \rightarrow \infty}|2|^{n(r-2)} \varphi(x, y, z)=0
$$

for all $x, y, z \in Y$. Therefore the conditions of Theorem 2.1 are satisfied. It is easy to see that $\psi_{0}(x)=3|2|^{-3-r} \theta\|x\|^{r}$. By Theorem 2.1 there is a unique general quadratic mapping $T: X \rightarrow Y$ such that (2.6) holds.

Theorem 2.3. Let $\varphi: X^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} z\right)=0(x, y, z \in X) \tag{2.7}
\end{equation*}
$$

Suppose that $f: X \rightarrow Y$ is a mapping satisfying

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \varphi(x, y, z) \quad(x, y, z \in X) \tag{2.8}
\end{equation*}
$$

Then there exists a unique general quadratic mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \lim _{n \rightarrow \infty} \max \left\{\psi_{j}(x): 0 \leq j<n\right\} \quad(x \in X) \tag{2.9}
\end{equation*}
$$

where $\psi_{j}: X \rightarrow[0, \infty)$ is defined by

$$
\begin{aligned}
& \psi_{j}(x) \\
& :=\max \left\{|2|^{2 j-1} \varphi\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}, \frac{x}{2^{j+1}}\right),|2|^{2 j-1} \varphi\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}\right),\right. \\
& \quad|2|^{2 j-1} \varphi\left(\frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}, \frac{-x}{2^{j+1}}\right),|2|^{2 j-1} \varphi\left(\frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}\right) \\
& \quad|2|^{j-1} \varphi\left(\frac{x}{2^{j}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right),|2|^{j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j}}, \frac{x}{2^{j+1}}\right) \\
& \left.\quad|2|^{j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\right\}
\end{aligned}
$$

for all $j \geq 0$. In particular, T is given by

$$
\begin{array}{r}
T(x)=\lim _{n \rightarrow \infty} \frac{4^{n}}{2}\left(f\left(2^{-n} x\right)+f\left(-2^{-n} x\right)-2 f(0)\right) \\
+2^{n-1}\left(f\left(\frac{x}{2^{n}}\right)-f\left(-\frac{x}{2^{n}}\right)\right)+f(0)
\end{array}
$$

for all $x \in X$.

Proof. Let $J_{n} f: X \rightarrow Y$ be a function defined by

$$
\begin{array}{r}
J_{n} f(x)=\lim _{n \rightarrow \infty} \frac{4^{n}}{2}\left(f\left(2^{-n} x\right)+f\left(-2^{-n} x\right)-2 f(0)\right) \\
+2^{n-1}\left(f\left(\frac{x}{2^{n}}\right)-f\left(-\frac{x}{2^{n}}\right)\right)+f(0)
\end{array}
$$

for all $x \in X$ and $n \in \mathbb{N}$. Notice that $J_{0} f(x)=f(x)$ and

$$
\begin{align*}
& \left\|J_{j} f(x)-J_{j+1} f(x)\right\| \tag{2.10}\\
& =\| \frac{4^{j}}{2}\left(D f\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}, \frac{x}{2^{j+1}}\right)+D f\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}\right)\right. \\
& \left.\quad+D f\left(\frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}, \frac{-x}{2^{j+1}}\right)+D f\left(\frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}\right)\right) \\
& \quad-2^{j-1}\left(D f\left(\frac{x}{2^{j}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)-D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j}}, \frac{x}{2^{j+1}}\right)\right. \\
& \left.\quad+D f\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\right) \| \\
& \leq \psi_{j}(x)
\end{align*}
$$

for all $x \in X$ and $j \geq 0$. It follows from (2.7) and (2.10) that the sequence $\left\{J_{n} f(x)\right\}$ is Cauchy. Since Y is complete, we conclude that $\left\{J_{n} f(x)\right\}$ is convergent. Set

$$
T(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

Using induction one can show that

$$
\begin{equation*}
\left\|J_{n} f(x)-f(x)\right\| \leq \max \left\{\psi_{j}(x): 0 \leq j<n\right\} \tag{2.11}
\end{equation*}
$$

for all $n \in N$ and all $x \in X$. By taking n to approach infinity in (2.11) and using (2.7) one obtains (2.9). Replacing x, y, and z by $2^{-n} x, 2^{-n} y$, and $2^{-n} z$, respectively, in (2.8), we get

$$
\begin{aligned}
& \left\|D J_{n} f(x, y, z)\right\| \\
& =\| 2^{n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)-2^{n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right) \\
& \quad+2^{2 n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)+2^{2 n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right) \| \\
& \leq \max \left\{|2|^{n-1} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right),|2|^{n-1} \varphi\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}, \frac{-z}{2^{n}}\right)\right\} .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ and using (2.7) we get $D T(x, y, z)=0$. If T^{\prime} is another general quadratic mapping satisfying (2.9), then

$$
\begin{aligned}
& T^{\prime}(x)-J_{k} T^{\prime}(x) \\
& =\sum_{j=0}^{k-1}\left(\frac { 4 ^ { j } } { 2 } \left(D T^{\prime}\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}, \frac{x}{2^{j+1}}\right)+D T^{\prime}\left(\frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}, \frac{x}{2^{j+2}}\right)\right.\right. \\
& \left.\quad+D T^{\prime}\left(\frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}, \frac{-x}{2^{j+1}}\right)+D T^{\prime}\left(\frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}, \frac{-x}{2^{j+2}}\right)\right) \\
& \quad-2^{j-1}\left(D T^{\prime}\left(\frac{x}{2^{j}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)-D T^{\prime}\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j}}, \frac{x}{2^{j+1}}\right)\right. \\
& \left.\left.\quad+D T^{\prime}\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right)\right)\right)=0
\end{aligned}
$$

for any $k \in \mathbb{N}$ and so

$$
\begin{aligned}
& \left\|T(x)-T^{\prime}(x)\right\| \\
& =\lim _{k \rightarrow \infty}\left\|J_{k} T(x)-J_{k} T^{\prime}(x)\right\| \\
& \leq \lim _{k \rightarrow \infty} \max \left\{\left\|J_{k} T(x)-J_{k} f(x)\right\|,\left\|J_{k} f(x)-J_{k} T^{\prime}(x)\right\|\right\} \\
& \leq \lim _{k \rightarrow \infty}|2|^{k-1} \max \left\{\left\|T\left(\frac{x}{2^{k}}\right)-f\left(\frac{x}{2^{k}}\right)\right\|,\left\|T\left(-\frac{x}{2^{k}}\right)-f\left(-\frac{x}{2^{k}}\right)\right\|,\right. \\
& \left.\qquad\left\|f\left(\frac{x}{2^{k}}\right)-T^{\prime}\left(\frac{x}{2^{k}}\right)\right\|,\left\|f\left(-\frac{x}{2^{k}}\right)-T^{\prime}\left(-\frac{x}{2^{k}}\right)\right\|\right\} \\
& \leq \lim _{k \rightarrow \infty}|2|^{k-1} \lim _{n \rightarrow \infty} \max \left\{\psi_{j}\left(\frac{x}{2^{k}}\right), \psi_{j}\left(\frac{-x}{2^{k}}\right): 0 \leq j<n\right\} \\
& =\lim _{k \rightarrow \infty}|2|^{-1} \lim _{n \rightarrow \infty} \max \left\{\psi_{j}(x), \psi_{j}(-x): k \leq j<n+k\right\} \\
& =0 \quad(x \in X) .
\end{aligned}
$$

Therefore $T=T^{\prime}$. This completes the proof of the uniqueness of T.
Corollary 2.4. Let X and Y be non-Archimedean normed spaces over \mathbb{K} with $|2|<1$. If Y is complete and for some $0 \leq r<1, f: X \rightarrow Y$ satisfies the condition

$$
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
$$

for all $x, y, z \in X$. Then there exists a unique general quadratic mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq 3|2|^{-1-2 r} \theta\|x\|^{r} \tag{2.12}
\end{equation*}
$$

Proof. Let $\varphi(x, y, z)=\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$. Since $|2|<1$ and $1-r>0$,

$$
\lim _{n \rightarrow \infty}|2|^{n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} z\right)=\lim _{n \rightarrow \infty}|2|^{n(1-r)} \varphi(x, y, z)=0
$$

for all $x, y, z \in X$. Therefore the conditions of Theorem 2.3 are satisfied. It is easy to see that $\psi_{0}(x)=3|2|^{-1-2 r} \theta\|x\|^{r}$. By Theorem 2.3, there is a unique general quadratic mapping $T: X \rightarrow Y$ satisfying (2.12).

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A. 27 (1941), 222-224.
[3] K. W. Jun and H. M. Kim, The generalized Hyers-Ulam stability of a general quadratic functional equation, J. Appl. Math. Comput. 15 (2004), 377-392.
[4] H. M. Kim, Hyers-Ulam stability of a general quadratic functional equation, Publ. Inst. Math. (Beograd) 73 (2003), 129-137.
[5] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in nonArchimedean spaces, Appl. Anal. Discrete Math. 1 (2007), 325-334.
[6] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[7] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
*
Department of Mathematics Education
Gongju National University of Education
Gongju 314-060, Republic of Korea
E-mail: chjlee@gjue.ac.kr
**
Department of Mathematics Education
Gongju National University of Education
Gongju 314-060, Republic of Korea
E-mail: lyhmzi@gjue.ac.kr

[^0]: Received February 05, 2013; Accepted April 04, 2013.
 2010 Mathematics Subject Classification: Primary 46S40, 39B52 .
 Key words and phrases: non-Archimedean normed spaces, general quadratic functional equation.

 Correspondence should be addressed to Yang-Hi Lee, lyhmzi@gjue.ac.kr.
 This work was supported by Gongju National University of Education Grant.

