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LINEAR DIFFEOMORPHISMS WITH LIMIT
SHADOWING

Keonhee Lee*, Manseob Lee**, and Junmi Park***

Abstract. In this paper, we show that for a linear dynamical sys-
tem f(x) = Ax of Cn, f has the limit shadowing property if and
only if the matrix A is hyperbolic.

1. Introduction

Let (X, d) be a compact metric space with the metric d, and let
f : X → X be a homeomorphism. For δ > 0, a sequence of points
{xi}i∈Z is called a δ-pseudo orbit of f if d(f(xi), xi+1) < δ for all i ∈ Z.
We say that f has the shadowing property if for every ε > 0, there is
δ > 0 such that for any δ-pseudo orbit {xi}i∈Z there is y ∈ X such
that d(fn(y), xn) < ε for all n ∈ Z. We introduce the limit shadowing
property which founded in [2]. We say that f has the limit shadowing
property if there exists δ > 0 with the following property: if a sequence
{xi}i∈Z is δ-limit pseudo orbit of f for which relations d(f(xi), xi+1) → 0
as i → +∞, and d(f−1(xi+1), xi) → 0 as i → −∞ hold, then there is a
point y ∈ X such that d(f i(y), xi) → 0 as i → ±∞. It is easy to see that
f has the limit shadowing property on Λ if and only if fn has the limit
shadowing property on Λ for n ∈ Z \ {0}. Note that the limit shadowing
property is not the shadowing property. In fact, in [2], this concept is
called the weak limit shadowing property and different from the notion
of Pilyugin [3](see, [2] Example 3, 4).
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The notion of the pseudo orbits very often appears in several branches
of the modern theory of dynamical system. For instance, the pseudo-
orbit tracing property (shadowing property) usually plays an important
role in the stability theory(see, [3]).

Let A be a nonsingular matrix on Cn. We consider the dynamical
system f(x) = Ax of Cn. We say that the matrix A is called hyperbolic
if the spectrum does not intersect the circle {λ : |λ| = 1} (for more
detail, see [1]).

Theorem 1.1. For a linear dynamical system f(x) = Ax of Cn, the
following conditions are mutually equivalent:

(a) f has the limit shadowing property,
(b) the matrix A is hyperbolic.

2. Proof of Theorem 1.1

For the proof of (a) ⇒ (b), we need the following two lemmas.

Lemma 2.1. Let (X, d) be a metric space. Assume that for two
dynamical systems f and g on X, there exists a homeomorphism h on
X such that f ◦ h = h ◦ g. Then f has the limit shadowing property if
and only if g has the limit shadowing property.

Proof. Suppose that f has the limit shadowing property. For any δ >
0, let ξ = {xi}i∈Z be a δ-limit pseudo orbit of f. Then d(f(xi), xi+1) < δ,
for all i ∈ Z and d(f(xi), xi+1) → 0 as i → ±∞. Since f ◦ h = h ◦ g, we
know that

d(g(h−1(xi)), h−1(xi+1)) < δ for all i ∈ Z,

and d(g(h−1(xi)), h−1(xi+1)) → 0 as i → ±∞. Thus {h−1(xi)}i∈Z is
a δ-limit pseudo orbit of g. Since f has the limit shadowing property,
there is a point y ∈ X such that d(f i(y), xi) → 0 as i → ±∞. Then
d(f i(y), xi) = d(gi(h−1(y)), h−1(xi)) → 0 as i → ±∞. Then the point
h−1(y) ∈ X is the limit shadowing point of g. Thus g has the limit
shadowing property.

Lemma 2.2. [3] Let A be a nonhyperbolic matrix and λ be an eigen-
value of A with |λ| = 1. Then there exists a nonsingular matrix T such
that J = T−1AT is a Jordan form of A and the matrix J has the form(

B O
O D

)
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where B is the nonsingular m×m complex matrix with the form



λ 0 · · · 0 0
1 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λ


 ,

and D is the hyperbolic matrix.

Proof of (a) ⇒ (b). Suppose that f has the limit shadowing property.
To derive a contradiction, we may assume that the matrix A is non-
hyperbolic. Then the matrix A has an eigenvalue λ with |λ| = 1. By
Lemma 2.2, there is a nonsingular matrix T such that J = T−1AT is a

Jordan form of A and the jordan form J =
(

B O
O D

)
, where B and D

are as in Lemma 2.2. Let g(x) = J(x) = T−1AT (x), and let h(x) = T (x)
for x ∈ Cn. Then f ◦h = h◦g. Since f has the limit shadowing property,
by Lemma 2.1, g has the limit shadowing property. Let δ > 0 be the
number of the definition of the limit shadowing property of g. Denote by
x(i) the i-th component of a vector x ∈ Cn. Then we construct a δ-limit
pseudo orbit as follows:

x
(1)
i+1 = λx

(1)
i

(
1 +

δ

2|i||x(1)
i |

)
,

and x′i+1 = (x(2)
i+1, x

(3)
i+1, . . . , x

(n)
i+1) = ((Jxi)(2), (Jxi)(3), . . . , (Jxi)(n)), for

all i ∈ Z. Since g(xi) = Jxi = (λx
(1)
i , (Jxi)(2), (Jxi)(3), . . . , (Jxi)(n)) =

(λx
(1)
i , x′i+1), we know that if λ = 1, then

d(g(xi), xi+1) =
∣∣∣x(1)

i − x
(1)
i − x

(1)
i δ

2|i|
∣∣x(1)

i

∣∣
∣∣∣ =

δ

2|i|
< δ,

for all i ∈ Z and if i → ±∞, then d(g(xi), xi+1) = δ/2|i| → 0. Thus
{xi}i∈Z is a δ-limit pseudo orbit of g. Since g has the limit shadowing
property, there is a point y ∈ X such that d(gi(y), xi) → 0 as i → ±∞.
If y = (0, 0, . . . , 0) then

d(gi+1(y), xi+1) =
∣∣∣x(1)

i +
x

(1)
i δ

2|i|
∣∣x(1)

i

∣∣
∣∣∣ ≥ |x(1)

i | > 0.

This is a contradiction. If y = (0, y(2), y(3), . . . , y(n)), then

gi+1(y) = (0, (J iy)(2), (J iy)(3), . . . , (J iy)(n)).
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Then, we see that if for all i ∈ Z,

|((Jxi)(2), (Jxi)(3), . . . , (Jxi)(n))− ((J iy)(2), (J iy)(3), . . . , (J iy)(n))| = 0,

then as in the proof of the above, for (J iy)(1) = 0, we get a contradiction.
Thus we see that for the point y ∈ X, the first component of y, say y(1), is
not equal to 0. Then we consider the case g(y) = g(y(1), y(2), . . . , y(n)) =
(y(1), (Jy)(2), (Jy)(3), . . . , (Jy)(n)). Thus, for all i ∈ Z,

∣∣∣x(1)
i +

x
(1)
i δ

2|i|
∣∣x(1)

i

∣∣ − y(1)
∣∣∣ ≥ |x(1)

i − y(1)|.

Take η > 0, let |x(1)
0 | = η. For all i ∈ Z, we see that

(2.1) |x(1)
i | = η + δ +

δ

2
+

δ

22
+ · · ·+ δ

2i−1
= η + 2δ

(
1− 1

2i

)
.

If x0 = y then by (2.1),

(2.2) |x(1)
i − y(1)| ≥ |η + 2δ

(
1− 1

2i

)
| − |η| ≥ |η| − |2δ

(
1− 1

2i

)
| − |η|,

for all i ∈ Z. Then by (2.2), if i →∞, then |x(1)
i −y(1)| → −|2δ| 6= 0. This

is a contradiction. Finally, we consider x
(1)
0 6= y(1). Since |x(1)

0 −y(1)| 6= 0,

we can take γ > 0 such that |x(1)
0 − y(1)| = γ. Let |x(1)

0 | = η > 0. Then
by (2.2),

(2.3) |x(1)
i − y(1)| ≥ |η + 2δ

(
1− 1

2i

)
| − |η| − |γ| ≥ −|2δ

(
1− 1

2i

)
| − |γ|,

for all i ∈ Z. Then by (2.3), if i →∞, then |x(1)
i −y(1)| → −|2δ|−|γ| 6= 0.

This is a contradiction. Thus if f has the limit shadowing property, then
the matrix A is hyperbolic. ¤

Finally, we show that (b) ⇒ (a), that is proved by Lee [2] as follow.

Lemma 2.3. Let f(x) = Ax of Cn. If A is the hyperbolic matrix,
then f has the limit shadowing property.

Proof. Denote by Ep the invariant subspace of TpCn corresponding
to the eigenvalues λi of A such that |λi| < 1, and by Fp the invariant
subspace of TpCn corresponding to the eigenvalues λi of A such that
|λi| > 1. By [3], there exist C > 0, m ∈ N, 0 < λ < 1, and invariant
linear subspaces Ep and Fp of TpCn for p ∈ Cn such that

(1) TpCn = Ep ⊕ Fp,

(2) |Amk(v)| < Cλk|v|, v ∈ Ep, k ≥ 0,
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(3) |A−mk(v)| < Cλ−k|v|, v ∈ Fp, k < 0.

This means that the dynamical system fm(x) = Am(x) is hyperbolic.
Then by [2], fm has the limit shadowing property, therefore, f has the
limit shadowing property.
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