DOI QR코드

DOI QR Code

SKEW-SYMMETRIC SOLVENT FOR SOLVING A POLYNOMIAL EIGENVALUE PROBLEM

  • Han, Yin-Huan (School of Mathematics and Physics Qingdao University of Science and Technology) ;
  • Kim, Hyun-Min (Department of Mathematics Pusan National University)
  • 투고 : 2012.10.11
  • 심사 : 2013.04.04
  • 발행 : 2013.05.15

초록

In this paper a nonlinear matrix equation is considered which has the form $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_{m-1}X+A_m=0$$ where X is an $n{\times}n$ unknown real matrix and $A_m$, $A_{m-1}$, ${\cdots}$, $A_0$ are $n{\times}n$ matrices with real elements. Newtons method is applied to find the skew-symmetric solvent of the matrix polynomial P(X). We also suggest an algorithm which converges the skew-symmetric solvent even if the Fr$\acute{e}$echet derivative of P(X) is singular.

키워드

참고문헌

  1. Y. Han and H. Kim, Finding the skew-symmetric solvent to a quadratic matrix euqation, To appear in East Asian Math. Jour.
  2. N. J. Higham and H. Kim, Numerical Analysis of a Quadratic Matrix Equation, IMA J. Numer. Anal. 20 (2000), 499-519. https://doi.org/10.1093/imanum/20.4.499
  3. N. J. Higham and H. Kim, Solving a quadratic matrix equation by Newtons method with exact line searches, SIAM J. Matrix Anal. Appl. 23 (2001), 303-316. https://doi.org/10.1137/S0895479899350976
  4. N. J. Higham and H. Kim, Numerical Analysis of a Quadratic Matrix Equation, IMA J. Numer. Anal. 20 (2000), 499-519. https://doi.org/10.1093/imanum/20.4.499
  5. W. Kratz and E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal. 7 (1987), 355-369. https://doi.org/10.1093/imanum/7.3.355
  6. V. Mehrmann and D. Watkins, Sturcture-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Statist. Comput. 22 (2001), 1905-1925. https://doi.org/10.1137/S1064827500366434
  7. M. H. C. Paardekooper, An eigenvalue algorithm for skew-symmetric matrices, Numer. Math. 17 (1971), 189-202. https://doi.org/10.1007/BF01436375
  8. J. Seo and H. Kim, Solving matrix polynomials by Newton's method with exact line searches, J. KSIAM 12 (2008), 55-68.
  9. F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIMA Rev. 43 (2001), 235-286. https://doi.org/10.1137/S0036144500381988