DOI QR코드

DOI QR Code

MINIMAL QUASI-F COVERS OF vX

  • Kim, ChangIl (Department of Mathematics Education Dankook University)
  • Received : 2012.12.13
  • Accepted : 2013.01.11
  • Published : 2013.02.15

Abstract

We show that if X is a space such that ${\beta}QF(X)=QF({\beta}X)$ and each stable $Z(X)^{\sharp}$-ultrafilter has the countable intersection property, then there is a homeomorphism $h_X:vQF(X){\rightarrow}QF(vX)$ with $r_X={\Phi}_{vX}{\circ}h_X$. Moreover, if ${\beta}QF(X)=QF({\beta}X)$ and $vE(X)=E(vX)$ or $v{\Lambda}(X)={\Lambda}(vX)$, then $vQF(X)=QF(vX)$.

Keywords

References

  1. F. Dashiell, A. W. Hager, and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685. https://doi.org/10.4153/CJM-1980-052-0
  2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
  3. A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
  4. M. Henriksen, J. Vermeer, and R. G. Woods, Wallman covers of compact spaces, Dissertationes Mathematicae, 280 (1989), 1-31.
  5. M. Henriksen, J. Vermeer, and R. G. Woods, Quasi-F-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-804.
  6. S. Iliadis, Absolute of Hausdorff spaces, Sov. Math. Dokl. 4 (1963), 295-298.
  7. C. I. Kim and K. H. Jung, Minimal Basically Disconnected covers of some extension, Commun. Korean Math. Soc. 17(2002), 709-718. https://doi.org/10.4134/CKMS.2002.17.4.709
  8. C. I. Kim, Minimal covers and filter spaces, Topol. and its Appl. 72 (1996), 31-37. https://doi.org/10.1016/0166-8641(96)00009-0
  9. J. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin, 1988.
  10. J. Vermeer, The smallest basically disconnected preimage of a space, Topol. Appl. 17 (1984), 217-232. https://doi.org/10.1016/0166-8641(84)90043-9