초록
Let (D,B) be an admissible pair. Then recall that $B\;{\times}^L_HD^{{\rightarrow}{\pi}_D}_{{\leftarrow}i_D}\;D$ are bialgebra maps satisfying ${\pi}_D{\circ}i_D=I$. We have solved a converse in case D is a Hopf algebra. Let D be a Hopf algebra with antipode $S_D$ and be a left H-comodule algebra and a left H-module coalgebra over a field $k$. Let A be a bialgebra over $k$. Suppose $A^{{\rightarrow}{\pi}}_{{\leftarrow}i}D$ are bialgebra maps satisfying ${\pi}{\circ}i=I_D$. Set ${\Pi}=I_D*(i{\circ}s_D{\circ}{\pi}),B=\Pi(A)$ and $j:B{\rightarrow}A$ be the inclusion. Suppose that ${\Pi}$ is an algebra map. We show that (D,B) is an admissible pair and $B^{\leftarrow{\Pi}}_{\rightarrow{j}}A^{\rightarrow{\pi}}_{\leftarrow{i}}D$ is an admissible mapping system and that the generalized biproduct bialgebra $B{\times}^L_HD$ is isomorphic to A as bialgebras.