DOI QR코드

DOI QR Code

BIPRODUCT BIALGEBRAS WITH A PROJECTION ONTO A HOPF ALGEBRA

  • Park, Junseok (Department of Mathematics College of Natural Sciences Hoseo University)
  • 투고 : 2012.09.19
  • 심사 : 2013.01.11
  • 발행 : 2013.02.15

초록

Let (D,B) be an admissible pair. Then recall that $B\;{\times}^L_HD^{{\rightarrow}{\pi}_D}_{{\leftarrow}i_D}\;D$ are bialgebra maps satisfying ${\pi}_D{\circ}i_D=I$. We have solved a converse in case D is a Hopf algebra. Let D be a Hopf algebra with antipode $S_D$ and be a left H-comodule algebra and a left H-module coalgebra over a field $k$. Let A be a bialgebra over $k$. Suppose $A^{{\rightarrow}{\pi}}_{{\leftarrow}i}D$ are bialgebra maps satisfying ${\pi}{\circ}i=I_D$. Set ${\Pi}=I_D*(i{\circ}s_D{\circ}{\pi}),B=\Pi(A)$ and $j:B{\rightarrow}A$ be the inclusion. Suppose that ${\Pi}$ is an algebra map. We show that (D,B) is an admissible pair and $B^{\leftarrow{\Pi}}_{\rightarrow{j}}A^{\rightarrow{\pi}}_{\leftarrow{i}}D$ is an admissible mapping system and that the generalized biproduct bialgebra $B{\times}^L_HD$ is isomorphic to A as bialgebras.

키워드

참고문헌

  1. S. Caenepeel, G. Militaru and Z. Shenglin, Crossed Modules and Doi-Hopf Modules, Israel J. Math. 100 (1997), 221-247. https://doi.org/10.1007/BF02773642
  2. Zhang Liangyun, L-R smash products for bimodule algebras, Progress in Nature Science 16(6) (2006), 580-587. https://doi.org/10.1080/10020070612330038
  3. S. Montgomery, Hopf Algebras and their actions on Rings, AMS, Rhode Island, 1992.
  4. R. K. Molnar, Semi-Direct Products of Hopf Algebras, Journal of Algebra 47 (1977), 29-51. https://doi.org/10.1016/0021-8693(77)90208-3
  5. J. S . Park and W. S. Kim, Properties of Generalized Biproduct Hopf Algebras, J. of the Chungcheong Mathematical Society 23 (2010), no. 2, 323-333.
  6. J. S. Park, Generalized Biproduct Hopf Algebras, J. of the Chungcheong Mathematical Society 21 (2008), no. 3, 301-320.
  7. D. E. Radford , The Structure of Hopf Algebras with a Projection, Journal of Algebra 92 (1985), 322-347. https://doi.org/10.1016/0021-8693(85)90124-3
  8. M. Takeuchi, $Ext_{ad}(S_pR,{\mu}^A)^{\sim}_=\widehat{B_r}(A/k)$, Journal of Algebra 67 (1980), 436-475. https://doi.org/10.1016/0021-8693(80)90170-2
  9. E. Abe, Hopf Algebras, Cambridge University Press, Cambridge, 1977.