References
- Akgoz, B. and Civalek, O. (2011a), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009
- Akgoz, B. and Civalek, O. (2011b), "Application of strain gradient elasticity theory for buckling analysis of protein microtubules", Curr. Appl. Phys., 11(5), 1133-1138. https://doi.org/10.1016/j.cap.2011.02.006
- Akgoz, B. and Civalek, O. (2012), "Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory", Arch. Appl. Mech., 82(3), 423-443. https://doi.org/10.1007/s00419-011-0565-5
- Akgoz, B. and Civalek, O. (2013a), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Akgoz, B. and Civalek, O. (2013b), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004
- Alizada, A.N. and Sofiyev, A.H. (2011), "Modified Young's moduli of nano-materials taking into account the scale effects and vacancies", Meccanica, 46, 915-920. https://doi.org/10.1007/s11012-010-9349-1
- Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of microtubules as cytoskeleton components: Nonlocal Euler-Bernoulli beam modeling", Scientia Iranica, Trans. B-Mech. Eng., 17(5), 367-375.
- Civalek, O., Demir, C. and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298.
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35, 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Darbandi, S.M., Firouz-Abadi, R.D. and Haddadpour, H. (2010), "Buckling of variable section columns under axial loading", J. Eng. Mech., 136(4), 472-476. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000096
- Demir, C., Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique", Math. Comput. Appl., 15(1), 57-65.
- Eisenberger, M. (1991), "Buckling loads for variable cross-section members with variable axial forces", Int. J. Solids Struct., 27(2), 135-143. https://doi.org/10.1016/0020-7683(91)90224-4
- Elishakoff, I. and Bert, C.W. (1988), "Comparison of Rayleigh's noninteger-power method with Rayleigh-Ritz method", Comput. Methods Appl. Mech. Eng., 67(3), 297-309. https://doi.org/10.1016/0045-7825(88)90050-3
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves." J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Fleck, N.A., Muller, G.M., Asbhy, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metall. Mater., 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
- Gere, J.M. and Carter, W.O. (1962), "Critical buckling loads for tapered columns", J. Struct. Eng., 88(1), 1-11.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Liew, K.M., Hu, Y.A. and He, X.Q. (2008), "Flexural wave propagation in single-walled carbon nanotubes", J. Comput. Theor. Nanosci., 5(4), 581-586. https://doi.org/10.1166/jctn.2008.019
- Lim, C.W. (2009), "Equilibrium and static deflection for bending of a nonlocal nanobeam", Adv. Vib. Eng., 8(4), 277-300.
- Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: Equilibrium, governing equation and static deflection", Appl. Math. Mech., 31, 37-54. https://doi.org/10.1007/s10483-010-0105-7
- Lim, C.W., Niu, J.C. and Yu, Y.M. (2010), "Nonlocal stress theory for buckling instability of nanotubes: New predictions on stiffness strengthening effects of nanoscales", J. Comput. Theor. Nanosci., 7, 2104-2111. https://doi.org/10.1166/jctn.2010.1591
- Lim, C.W. and Wang, C.M. (2007), "Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams", J. Appl. Phys., 101, 54312-316. https://doi.org/10.1063/1.2435878
- Liu, G.R., Cheng, Y., Mi, D. and Li, Z.R. (2005), "A study on self-insertion of peptides into single-walled carbon nanotubes based on molecular dynamics simulation", Int. J. Modern Phys. C, 16, 1239-1250. https://doi.org/10.1142/S0129183105007856
- Shen, H.S. (2010), "Nonlocal shear deformable shell model for bending buckling of micro tubules embedded in an elastic medium'', Phys. Lett. A, 374, 4030-4039. https://doi.org/10.1016/j.physleta.2010.08.006
- Shen, L., Shen, H.S. and Zhang, C.L. (2010a), "Temperature-dependent elastic properties of single layer graphene sheets", Mater. Design, 31, 4445-4449. https://doi.org/10.1016/j.matdes.2010.04.016
- Shen, L., Shen, H.S. and Zhang, C.L. (2010b), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. https://doi.org/10.1063/1.1625437
- Şimsek, M. (2010). "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
- Şimsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wang, Q., Liew, K.M. and Duan, W.H. (2008), "Modeling of the mechanical instability of carbon nanotubes", Carbon, 46(2), 285-290. https://doi.org/10.1016/j.carbon.2007.11.022
- Wang, C.M., Wang, C.Y. and Reddy, J.N. (2005). Exact Solutions for Buckling of Structural Members, Chap. 2, CRC Press, Boca Raton, Florida.
- Zhang, C.L. and Shen, H.S. (2007), "Thermal buckling of initially compressed single-walled carbon nanotubes by molecular dynamics simulation", Carbon, 45(13), 2614-2620. https://doi.org/10.1016/j.carbon.2007.08.007
- Zhang, Y.Q., Liu, G.R. and Han, X. (2004), "Analysis of strain localization for ductile materials with effect of void growth", Int. J. Mech. Sci., 46(7), 1021-1034. https://doi.org/10.1016/j.ijmecsci.2004.07.011
- Zhang, Y.Q., Liu, G.R. and Han, X. (2006), "Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure", Phys. Lett. A, 349(5), 370-376. https://doi.org/10.1016/j.physleta.2005.09.036
- Zhang, Y.Q., Liu, G.R., Qiang, H.F. and Li, G.Y. (2006), "Investigation of buckling of double-walled carbon nanotubes embedded in an elastic medium using the energy method", Int. J. Mech. Sci., 48(1), 53-61. https://doi.org/10.1016/j.ijmecsci.2005.09.010
- Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), 205430. https://doi.org/10.1103/PhysRevB.70.205430
Cited by
- Size-dependent piezoelectric energy-harvesting analysis of micro/nano bridges subjected to random ambient excitations vol.27, pp.2, 2018, https://doi.org/10.1088/1361-665X/aaa1a9
- On size-dependent vibration of rotary axially functionally graded microbeam vol.101, 2016, https://doi.org/10.1016/j.ijengsci.2015.12.008
- Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.062
- Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams vol.129, 2017, https://doi.org/10.1016/j.compositesb.2017.07.024
- Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and a generalized differential quadrature method vol.4, pp.6, 2017, https://doi.org/10.1088/2053-1591/aa7111
- Nonlinear size-dependent dynamic buckling analysis of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.23, pp.12, 2017, https://doi.org/10.1007/s00542-017-3407-8
- Dynamic transverse vibration characteristics of nonuniform nonlocal strain gradient beams using the generalized differential quadrature method vol.132, pp.11, 2017, https://doi.org/10.1140/epjp/i2017-11757-4
- Vibrational behavior of rotating pre-twisted functionally graded microbeams in thermal environment vol.157, 2016, https://doi.org/10.1016/j.compstruct.2016.08.031
- Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM vol.149, 2016, https://doi.org/10.1016/j.compstruct.2016.04.024
- A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.475
- Bending, buckling and vibration of small-scale tapered beams vol.120, 2017, https://doi.org/10.1016/j.ijengsci.2017.08.005
- Nonlinear static and transient isogeometric analysis of functionally graded microplates based on the modified strain gradient theory vol.153, 2017, https://doi.org/10.1016/j.engstruct.2017.10.002
- Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory 2018, https://doi.org/10.1049/mnl.2017.0751
- Analytical solutions for static bending of edge cracked micro beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.579
- A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation vol.176, 2017, https://doi.org/10.1016/j.compstruct.2017.06.039
- Predicting dynamic response of large amplitude free vibrations of cantilever tapered beams on a nonlinear elastic foundation vol.87, pp.4, 2017, https://doi.org/10.1007/s00419-016-1221-x
- Geometrically nonlinear free vibration analysis of axially functionally graded taper beams vol.18, pp.4, 2015, https://doi.org/10.1016/j.jestch.2015.04.003
- Investigating the non-classical boundary conditions relevant to strain gradient theories vol.86, 2017, https://doi.org/10.1016/j.physe.2016.09.012
- Free Vibration of Edge Cracked Functionally Graded Microscale Beams Based on the Modified Couple Stress Theory vol.17, pp.03, 2017, https://doi.org/10.1142/S021945541750033X
- Thermal buckling of rotating pre-twisted functionally graded microbeams with temperature-dependent material properties vol.228, pp.3, 2017, https://doi.org/10.1007/s00707-016-1759-2
- Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
- A review of continuum mechanics models for size-dependent analysis of beams and plates vol.177, 2017, https://doi.org/10.1016/j.compstruct.2017.06.040
- On vibration behavior of rotating functionally graded double-tapered beam with the effect of porosities vol.230, pp.10, 2016, https://doi.org/10.1177/0954410015619647
- Nonlinear instability of hydrostatic pressurized microtubules surrounded by cytoplasm of a living cell including nonlocality and strain gradient microsize dependency vol.229, pp.1, 2018, https://doi.org/10.1007/s00707-017-1978-1
- Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method vol.24, pp.3, 2017, https://doi.org/10.1080/15376494.2015.1128025
- Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method 2018, https://doi.org/10.1016/j.aej.2017.06.001
- Buckling of bimorph functionally graded piezoelectric cylindrical nanoshell 2018, https://doi.org/10.1177/0954406217738033
- Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment vol.133, pp.3, 2018, https://doi.org/10.1140/epjp/i2018-11942-y
- Comprehensive nonlocal analysis of piezoelectric nanobeams with surface effects in bending, buckling and vibrations under magneto-electro-thermo-mechanical loading vol.5, pp.3, 2018, https://doi.org/10.1088/2053-1591/aab46d
- Effects of rotational restraints on the thermal buckling of carbon nanotube pp.1750-0443, 2018, https://doi.org/10.1049/mnl.2018.5428
- Finite Element Formulation for Linear Stability Analysis of Axially Functionally Graded Nonprismatic Timoshenko Beam pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419500020
- Higher order couple stress theory of plates and shells vol.98, pp.10, 2018, https://doi.org/10.1002/zamm.201800022
- Nonlocal Analysis of Natural Vibrations of Carbon Nanotubes pp.1544-1024, 2018, https://doi.org/10.1007/s11665-018-3673-3
- A modified couple stress theory for buckling analysis of higher order inhomogeneous microbeams with porosities pp.2041-2983, 2019, https://doi.org/10.1177/0954406218791642
- The comparison of strain gradient effects for each component in static and dynamic analyses of FGM micro-beams vol.229, pp.9, 2018, https://doi.org/10.1007/s00707-018-2192-5
- Thermal effect on bending, buckling and free vibration of functionally graded rectangular micro-plates possessing a variable length scale parameter vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3773-x
- Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material vol.13, pp.7, 2018, https://doi.org/10.1049/mnl.2018.0181
- Size-dependent nonlinear pull-in instability of the clamped cylindrical thin micro-/nanoshell based on the non-classical theories pp.0974-9845, 2019, https://doi.org/10.1007/s12648-018-1332-z
- Free vibrations of fluid conveying microbeams under non-ideal boundary conditions vol.24, pp.2, 2013, https://doi.org/10.12989/scs.2017.24.2.141
- Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects vol.62, pp.5, 2013, https://doi.org/10.12989/sem.2017.62.5.551
- Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam vol.63, pp.4, 2013, https://doi.org/10.12989/sem.2017.63.4.481
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2013, https://doi.org/10.12989/sem.2017.64.1.121
- A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103
- Dynamic response of functionally graded annular/circular plate in contact with bounded fluid under harmonic load vol.65, pp.5, 2018, https://doi.org/10.12989/sem.2018.65.5.523
- Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
- A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2013, https://doi.org/10.12989/sem.2018.66.3.369
- Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels vol.27, pp.4, 2013, https://doi.org/10.12989/scs.2018.27.4.525
- A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
- Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2013, https://doi.org/10.12989/scs.2018.28.1.013
- Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2013, https://doi.org/10.12989/anr.2018.6.3.219
- Free vibration of axially functionally graded beams using the asymptotic development method vol.173, pp.None, 2013, https://doi.org/10.1016/j.engstruct.2018.06.111
- On the Internal Resonances of Size-Dependent Clamped-Hinged Microbeams: Continuum Modeling and Numerical Simulations vol.11, pp.3, 2013, https://doi.org/10.1142/s1758825119500224
- Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems vol.31, pp.6, 2013, https://doi.org/10.12989/scs.2019.31.6.641
- Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates vol.7, pp.5, 2013, https://doi.org/10.12989/anr.2019.7.5.293
- Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.133
- Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.043
- Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2013, https://doi.org/10.12989/amr.2019.8.4.259
- Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics vol.26, pp.2, 2020, https://doi.org/10.1007/s00542-019-04512-1
- Size-dependent thermo-mechanical free vibration analysis of functionally graded porous microbeams based on modified strain gradient theory vol.42, pp.5, 2013, https://doi.org/10.1007/s40430-020-02340-3
- A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2013, https://doi.org/10.12989/sem.2020.74.5.611
- On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2013, https://doi.org/10.12989/sem.2020.75.6.659