DOI QR코드

DOI QR Code

Effect of open-core screw dislocation on axial conductivity in semiconductor crystals

  • Taira, Hisao (Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University) ;
  • Sato, Motohiro (Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University)
  • Received : 2013.07.08
  • Accepted : 2013.10.15
  • Published : 2013.09.25

Abstract

The alternating current (AC) conductivity in semiconductor crystals with an open-core screw dislocation is studied in the current work. The screw dislocation in crystalline media results in an effective potential field which affects the electronic transport properties of the system. Therefore, from a technological view point, it is interesting to investigate properties of AC conductivity at frequencies of a few terahertz. To quantify the screw-induced potential effect, we calculated the AC conductivity of dislocated crystals using the Kubo formula. The conductivity showed peaks within the terahertz frequency region, where the amplitude of the AC conductivity was large enough to be measured in experiments. The measurable conductivity peaks did not arise in dislocation-free crystals threaded by a magnetic flux tube. These results imply different conductivity mechanisms in crystals with a screw dislocation than those threaded by a magnetic flux tube, despite the apparent similarity in their electronic eigenstates.

Keywords

Acknowledgement

Supported by : Japan Society for Promotion of Science

References

  1. Agueev, O., Svetlichny, A.M., Izotovs, D.A., Melnikov, A.V. and Voronko, A.B. (2000), "Temperature dependence simulation of electropliysical properties of silicon carbide", ASDAM2000 Conf. Proc., 295-298.
  2. Aliaronov, Y. and Bohm, D. (1959), "Significance of electromagnetic potentials in tlie quantum theory", Phys. Rev., 115(3), 485-491. https://doi.org/10.1103/PhysRev.115.485
  3. Araki, H., Kitaliara, K. and Nakazato, K. (1981), "Riemannian-geometrical interpretation of quantum motion of a particle in a dislocated crystal", Prog. Theor. Phys., 66(5), 1895-1898. https://doi.org/10.1143/PTP.66.1895
  4. Asada, M. and Suzuki, S. (2011), "Teraliertz oscillators using electron devices - an approacli witli resonant tunneling diodes", IEICE Electr. Exprs., 8(14), 1110-1126. https://doi.org/10.1587/elex.8.1110
  5. Azevedo, S. and Moraes, F. (1998), "Topological Aliaronov-Bohm effect around a disclination", Phys. Lett. A, 246(4-6), 374-376. https://doi.org/10.1016/S0375-9601(98)00527-1
  6. Azevedo, S. and Pereira, J. (2000), "Double Aliaronov-Bohm effect in a medium with a disclination", Phys. Lett. A, 275(5-6), 463-466. https://doi.org/10.1016/S0375-9601(00)00597-1
  7. Bakke, K. and Moraes, F. (2012), "Tlireading dislocation densities in semiconductor crystals: a geometrical approach", Phys. Lett. A, 376(45), 2838-2841. https://doi.org/10.1016/j.physleta.2012.09.006
  8. Bauscli, R., Schmitz, R. and Turski, L.A. (1998), "Single-particle quantum states in a crystal with topological defects", Phys. Rev. Lett., 80(11), 2257-2260. https://doi.org/10.1103/PhysRevLett.80.2257
  9. Bauscli, R., Schmitz, R. and Turski, L.A. (1999a), "Quantum motion of electrons in topologically distorted crystals", Ann. Phys. (Leipzig), 8(3),181-189. https://doi.org/10.1002/(SICI)1521-3889(199903)8:3<181::AID-ANDP181>3.0.CO;2-H
  10. Bauscli, R., Schmitz, R. and Turski, L.A. (1999b), "Scattering of electrons on screw dislocations", Phys. Rev. B, 59(21), 13491-13493. https://doi.org/10.1103/PhysRevB.59.13491
  11. Berechman, R.A., Skowronski, M., Soloviev, S. and Sandvik, P.(2010), "Electrical cliaracterization of 4H-SiC avalanclie pliotodiodes containing threading edge and screw dislocations", J. AppL Phys., 107(111),114504:1-114504:4.
  12. Bilby, B.A., Bullougli, R. and Smith, E. (1955), "Continuous distribution of dislocations: a new application of tlie metliods of non-Riemannian geometry", Proc. R. Soc. London A, 231, 263-273. https://doi.org/10.1098/rspa.1955.0171
  13. Carvallio, A.M. de M., Satiro, C. and Moraes, F. (2007), "Aliaronov-Bohm-like effect for liglit propagating in nematics witli disclinations", Eur. Phys. Lett, 80(4), 46002:1-46002:6.
  14. Cliung, S., Berechman, R.A., McCartney, M.R. and Skowronski, M. (2011), "Electronic structure analysis of threading screw dislocations in 4H-SiC using electron holography", J. Appl. Phys., 109(3), 034906:1-034906:6.
  15. Dudley, M., Huang, X.R. and Vetter, W.M. (2003), "Contribution of x-ray topography and high-resolution diffraction to the study of defects in SiC", J. Phys. D: Appl. Phys., 36(10A), A30-A36. https://doi.org/10.1088/0022-3727/36/10A/307
  16. Dumiszewska, E., Strupinski, W. and Zdunek, K. (2007), "Interaction between dislocations density and carrier concentration of gallium nitride layers", J. Superhard Mater., 29(3), 174-176. https://doi.org/10.3103/S1063457607030124
  17. Furlado, C., Bezerra, V.B and Moraes, F. (2001), "Quantum scattering of by a magnetic flux screw dislocation", Phys. Lett. A, 289(3), 160-166. https://doi.org/10.1016/S0375-9601(01)00615-6
  18. Gilbert, M.R., Queyreau, S. and Marian, J (2011), "Stress and temperature dependence of screw dislocation mobility in $\alpha$-Fe by molecular dynamics", Phys. Rev. E, 84(17), 174103:1-174103:11.
  19. Kawamura, K. (1978), "A new theory on scattering of electrons due to spiral dislocations", Z Physik E, 29(2), 101-106. https://doi.org/10.1007/BF01313193
  20. Kitao, M. (1972), "Ac conductivity of amorphous $As_2Se_3$", Jpn. J. Appl. Phys., 11(10), 1472-1479. https://doi.org/10.1143/JJAP.11.1472
  21. Kubo, R. (1957), "Statistical mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems", J. Phys. Soc. Jpn., 12(6), 570-586. https://doi.org/10.1143/JPSJ.12.570
  22. Look, D.C. and Sizelove, J.R. (1999), "Dislocation scattering in GaN", Phys. Rev. Lett., 82(6), 1237-1240. https://doi.org/10.1103/PhysRevLett.82.1237
  23. Ma, X. (2006), "A method to determine superscrew dislocation structure in silicon carbide", Mater. Sci. Eng. E, 129(1-3), 216-221. https://doi.org/10.1016/j.mseb.2006.01.019
  24. Mirsaneh, M., Furman, E., Ryan, J.P., Lanagan, M.T. and Pantano, C.G. (2010), "Frequency dependent electrical measurements of amorphous GeSbSe chalcogenide thin films", Appl. Phys. Lett., 96(11), 112907:1- 112907:3.
  25. Netto, A.L.S. and Furlado, C. (2008), "Elastic landau levels", J. Phys.: Condens. Matter., 20(19), 15209:1-15209:9.
  26. Nieberding, W.C. (1983), "Researchers develop long-sought SiC crystal growth techniques", Ind. Res. Dev. 25, 148-150.
  27. Parsons, J.D., Bunshah, R.F. and Stafsudd, O.M. (1985), "Unlocking the potential of beta silicon carbide", Solid State Technol., 28(11), 133-139.
  28. Schafier, E., Zehetbauer, M. and Ungar, T. (2001), "Measurement of screw and edge dislocation density by means of X-ray Bragg profile analysis", Mater. Sci. Eng. A, 319-321, 220-223. https://doi.org/10.1016/S0921-5093(01)00979-0
  29. Segall, B., Alterovitz, S.A., Haugland, E.J. and Matus, L.G. (1986), "Compensation in epitaxial cubic SiC films", Appl. Phys. Lett., 49(10), 584-586. https://doi.org/10.1063/1.97048
  30. Si, W., Dudley, M., Glass, R. Tsvetkov, V. and Carter, C. Jr. (1997), "Hollow-core screw dislocations in 6H-SiC single crystals: a test of Frank's theory", J. Elect. Mater., 26(3), 128-133. https://doi.org/10.1007/s11664-997-0138-0
  31. Sugawara, Y., Nakamori, M., Yao, Y.Z., Ishikawa, Y., Danno, K., Suzuki, H., Bessho, T., Yamaguchi, S., Nishikawa, K. and Ikuhara, Y (2012), "Transmission electron microscopy analysis of a threading dislocation with c+a Burgers vector in 4H-SiC", Appl. Phys. Exp., 5(8), 081301: 1-081301:3.
  32. Turski, L.A., Bausch, R. and Schniitz, R. (2007), "Gauge theory of sound propagation in crystals with dislocations", J. Phys.: Condens. Matter., 19(9),096211 :1-096211 :6.
  33. Turski, L.A. and Minkowski, M. (2009), "Spin wave interaction with topological defects", J. Phys: Condens. Matter., 21(37), 376001 :1-376001:4.
  34. Vetter, W.M. and Dudley, M. (2002), "Surface-relaxation contributions to axial screw dislocation contrast in synchrotron white-beam X-ray topographs of SiC", J. Appl. Cryst., 35(6), 689-695. https://doi.org/10.1107/S0021889802016175
  35. Vetter, W.M. and Dudley, M. (2004), "Micropipes and the closure of axial screw dislocation cores in silicon carbide crystals", J. Appl. Phys., 96(1), 348-353. https://doi.org/10.1063/1.1759082