참고문헌
- Albrecht, M.G. and Creighton, J.A. (1977), "Anomalously intense Raman spectra of pyridine at a silver electrode", J. Am. Chem. Soc., 99, 5215-5217. https://doi.org/10.1021/ja00457a071
- Aroca, R.F. (2006), Surface enhanced vibrational spectroscopy, Wiley, Hoboken, NJ.
- Aroca, R.F., Goulet, P.J.G., Santos, D.S. dos, Alvarez-Puebla, R.A. and Oliveira, O.N. (2005), "Silver nanowire layer-by-layer films as substrates for surface enhanced raman scattering", Anal. Chem., 77, 378-382. https://doi.org/10.1021/ac048806v
- Esumi, K., Matsuhisa, K. and Torigoe, K. (1995), "Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template", Langmuir, 11, 3285-3287. https://doi.org/10.1021/la00009a002
- Fan, F.R., Attia, A., Sur, U.K., Chen, J.B. Xie, Z.X., Li, J.F., Ren, B. and Tian, Z.Q. (2009), "An effective strategy for room-temperature synthesis of single-crystalline palladium nanocubes and nanodendrites in aqueous solution", Cryst. Growth Des., 9, 2335-2340. https://doi.org/10.1021/cg801231p
- Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Jackson, M.A., Smith, P.C., Walter, D.G. and Natan, M.J. (1995), "Self-assembled metal colloid monolayers: an approach to SERS substrates", Science, 267,1629-1632. https://doi.org/10.1126/science.267.5204.1629
- Fleischmann, M., Hendra, P.J. and McQuillan, A.J. (1974), "Raman-spectra of pyridine adsorbed at a silver electrode", Chem. Phys. Lett., 26, 163-166. https://doi.org/10.1016/0009-2614(74)85388-1
- Fleischmann, M., Hendra, P.J. and McQuillan, A.J. (1973), "Raman spectra from electrode surface", J. Chem. Soc. Chem. Commn., 80-81.
- Haynes, C.L. and Van Duyne, R.P. (2001), "Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics", J. Phys.Chem. B., 105, 5599-5611. https://doi.org/10.1021/jp010657m
- Hu, J.Q., Chen, Q., Xie, Z.X., Han, G.B., Wang, R.H. and Ren, B. (2004), "A simple and effective route for the synthesis of crystalline silver nanorods and nanowires", Adv. Funct. Mater., 14, 183-189. https://doi.org/10.1002/adfm.200304421
- Huang, C.J., Chiu, P.H., Wang, Y.H., Chen, W.R. and Mee, T.H. (2006), "Synthesis of the gold nanocubes by electrochemical technique", J. Electrochem. Soc., 153, D129-D133. https://doi.org/10.1149/1.2203931
- Hulteen, J.C. and Martin, C.R. (1997), "A general template-based method for the preparation of nanomaterials", J. Mater. Chem., 7, 1075-1087. https://doi.org/10.1039/a700027h
- Jeanmaire, D.L. and Van Duyne, R.P. (1977), "Surface Raman electrochemistry part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode", J. Electroanal. Chem., 84, 1-20. https://doi.org/10.1016/S0022-0728(77)80224-6
- Kim, D., Park, J., An, K., Yang, N.K., Park, J.G. and Hyeon, T. (2007), "Synthesis of hollow iron nanoframes", J. Am. Chem. Soc., 129, 5812-5813. https://doi.org/10.1021/ja070667m
- Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R. and Field, M.S. (1997), "Single molecule detection using surface-enhanced Raman scattering (SERS)", Phys. Rev. Lett., 78, 1667-1670. https://doi.org/10.1103/PhysRevLett.78.1667
- Le Ru, E.C. and Etchegoin, P.G. (2009), Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier, Amsterdam, Boston.
- Li, J.F. et al. (2010), "Shell-isolated nanoparticle-enhanced Raman spectroscopy", Nature, 464, 392-395. https://doi.org/10.1038/nature08907
- Lin, T.T., Lin, Y.H., Hung, C.S. Liu, T.J., Chen, Y., Huang, Y.C., Tsai, T.H., Wang, H.H., Wang, D.W., Wang, J.K., Wang, Y.L. and Lin, C.H. (2009), "A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall", PLoS ONE, 4, 1-9. https://doi.org/10.1371/journal.pone.0005361
- Liao, P.F. and Wokaun, A. (1982), "Lightning rod effect in surface enhanced Raman scattering", J. Chem. Phys., 76, 751-752. https://doi.org/10.1063/1.442690
- Moskovits, M. (1978), "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals", J. Chem. Phys., 69, 4159-4161. https://doi.org/10.1063/1.437095
- Mulvihill, M., Tao, A., Benjauthrit, K., Arnold, J. and Yang, P. (2008), "Surface-enhanced Raman spectroscopy for trace arsenic eetection in contaminated water", Angew. Chem. Int. Ed., 47, 6456-6460. https://doi.org/10.1002/anie.200800776
- Nie, S. and Emory, S. R. (1997), "Probing single molecules and single nanoparticles by surface enhanced Raman scattering", Science, 275, 1102-1106. https://doi.org/10.1126/science.275.5303.1102
- Orendorff, C.J., Gole, A., Sau, T.K. and Murphy, C.J. (2005), "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence", Anal. Chem., 77, 3261-3266. https://doi.org/10.1021/ac048176x
- Pande, S., Chowdhury, J. and Pal, T. (2011), "Understanding the enhancement mechanisms in the surface-enhanced Raman spectra of the 1, 10-phenanthroline molecule adsorbed on a Au@Ag bimetallic nanocolloid", J. Phys. Chem. C., 115, 10497-10509. https://doi.org/10.1021/jp202197h
- Pettinger, B., Ren, B., Picardi, G., Schuster, R. and Ertl, G. (2004), "Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy", Phys. Rev. Lett., 92, 096101-096104. https://doi.org/10.1103/PhysRevLett.92.096101
- Raman, C.V. and Krishnan, K.S. (1928), "A new type of secondary radiation", Nature, 121, 501-501.
- Shafer-Peltier, K.E., Haynes, C.L., Glucksberg, M.R. and Van Duyne, R.P. (2003), "Toward a glucose biosensor based on surface-enhanced Raman scattering", J. Am. Chem. Soc., 125, 588-593. https://doi.org/10.1021/ja028255v
- Shankar, S.S., Rai, A. Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. (2004), "Biological synthesis of triangular gold nanoprisms", Nat. Mater., 3, 482-488. https://doi.org/10.1038/nmat1152
- Tao, A., Kim, F., Hess, C., Goldberger, J., He, R.R., Sun, Y.G., Xia, Y.N. and Yang, P.D. (2003), "Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopya", Nano Lett., 3, 1229-1233. https://doi.org/10.1021/nl0344209
- Tian, Z.Q., Ren, B. and Wu, D.Y. (2002), "Surface-Enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures", J. Phys. Chem. B, 106, 9463-9483. https://doi.org/10.1021/jp0257449
- Wang, H.H., Liu, C.Y., Wu, S.B., Liu, N.W., Peng, C.Y., Chan, T.H., Hsu, C.F., Wang, J.K. and Wang, Y.L. (2006), "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps", Adv. Mater., 18, 491- 495. https://doi.org/10.1002/adma.200501875
- Wang, A., Huang, Y.F., Sur, U.K., Wu, D.Y., Ren, B., Rondinini, S., Amatore, C. and Tian, Z.Q. (2010), "In Situ identification of intermediates of Benzyl chloride reduction at a silver electrode by SERS coupled with DFT calculations", J. Am. Chem. Soc., 13, 9534-9536.
- Willets, K.A. and Van Duyne, R.P. (2007), "Localized surface plasmon resonance spectroscopy and sensing", Annu. Rev. Phys. Chem., 58, 267-297. https://doi.org/10.1146/annurev.physchem.58.032806.104607
피인용 문헌
- A facile and transfer-free path for template-less synthesis of carbon nanosheets vol.143, 2015, https://doi.org/10.1016/j.matlet.2014.12.127
- Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications vol.18, pp.11, 2016, https://doi.org/10.1088/2040-8978/18/11/115003
- Surface-Enhanced Raman Scattering on Chemically Etched Copper Surface: An Upper-Level Spectroscopic Measurement and Analysis vol.97, pp.2, 2013, https://doi.org/10.1021/acs.jchemed.9b00706
- Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review vol.4, pp.1, 2021, https://doi.org/10.1021/acsabm.0c01349