DOI QR코드

DOI QR Code

Neural network-based generation of artificial spatially variable earthquakes ground motions

  • 투고 : 2012.03.21
  • 심사 : 2012.12.03
  • 발행 : 2013.05.25

초록

In this paper, learning capabilities of two types of Arterial Neural Networks, namely hierarchical neural networks and Generalized Regression Neural Network were used in a two-stage approach to develop a method for generating spatial varying accelerograms from acceleration response spectra and a distance parameter in which generated accelerogram is desired. Data collected from closely spaced arrays of seismographs in SMART-1 array were used to train neural networks. The generated accelerograms from the proposed method can be used for multiple support excitations analysis of structures that their supports undergo different motions during an earthquake.

키워드

참고문헌

  1. Ackley, D.H., Hinton, G.E. and Sejnowski, T.J. (1985), "A learning algorithm for boltzmann machines", J. Cognitive Sci., 9(1), 147-169. https://doi.org/10.1207/s15516709cog0901_7
  2. Asadi, A., Fadavi, M., Bagheri, A and Ghodrati Amiri, G. (2011), "Application of neural networks and an adapted wavelet packet for generating artificial ground motion", Struct. Eng. Mech., 37(6), 575-592. https://doi.org/10.12989/sem.2011.37.6.575
  3. Berrah, M. and Kausel, E. (1992), "Response spectrum analysis of structures subjected to spatially varying motions", Earthq. Eng. Struct. D., 21(6), 461-470. https://doi.org/10.1002/eqe.4290210601
  4. Bilici, Y., Bayraktar, A. and Soyluk, K. (2009), "Stochastic dynamic response of dam-reservoir-foundation systems to spatially varying earthquake ground motions", Soil Dyn. Earthq. Eng., 29(3), 444-458. https://doi.org/10.1016/j.soildyn.2008.05.001
  5. Buendia, F., Barron-Adame, J., Vega-Corona, A. and Andina, D. (2004), Improving GRNNs in CAD systems, ICA LNCS3195, 160-167.
  6. Cottrell, G.W., Munro, P. and Ziper, D. (1987), "Learning internal representations from gray-scale images: an example of extensional programming", Proc. 9th Annual Conf., Cognitive Science Society, Seattle, WA.
  7. Chopra, A.K. and Wang, J.T. (2010), "Earthquake response of arch dams to spatially varying ground motion", Earthq. Eng. Struct. D., 39(8), 887-906.
  8. Deodatis, G. (1996a), "Non-stationary stochastic vector process: seismic ground motion applications", Probab. Eng. Mech., 11(3), 149-168. https://doi.org/10.1016/0266-8920(96)00007-0
  9. Der Kiureghian, A. and Neuenhofer, A. (1992), "Response spectrum method for multiple-support seismic excitation", Earthq. Eng. Struct. D., 21, 712-740.
  10. Dumanogluid, A.A. and Soyluk, K. (2003), "A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect", Eng. Struct., 25(10), 1301-1310. https://doi.org/10.1016/S0141-0296(03)00080-4
  11. Ghaboussi, J. and Lin, C.C.J. (1998), "New method of generating spectrum compatible accelerograms using neural networks", Earthq. Eng. Struct. D., 27(4), 377-396. https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<377::AID-EQE735>3.0.CO;2-2
  12. Ghaffarzadeh, H. and Izadi, M.M. (2008), "Artificial generation of spatially varying seismic ground motion using ANNs", Proceedings of the 14th World Conference on Earthquke Engineering, Beijing, China.
  13. Ghodrati Amiri, G. and Bagheri, A. (2008), "Application of wavelet multiresolution analysis and artificial intelligence for generation of artificial earthquake accelerograms", Struct. Eng. Mech., 28(2), 153-166. https://doi.org/10.12989/sem.2008.28.2.153
  14. Harichandran, R.S. and Vanmark, E. (1986), "Stochastic variation of earthquake ground motion in space and time", J. Eng. Mech.-ASCE, 112(2), 154-174. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:2(154)
  15. Harichandran, R.S. and Wang, W. (1988), "Response of a simple beam to a spatially varying earthquake excitation", J. Eng. Mech.-ASCE, 114(9), 1526-1541. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:9(1526)
  16. Harichandran, R.S. and Wang, W. (1990), "Response of indeterminate two-span beam to spatially varying seismic excitation", Earthq. Eng. Struct. D., 19(2), 173-187. https://doi.org/10.1002/eqe.4290190203
  17. Haykin, S. (1994), Neural networks: a comprehensive foundation, Engelwood Cliffs, NJ: Prentice-Hall International, Inc.
  18. Hecht-Nielsen, R. (1995), "Replicator neural networks for universal optimal source coding", Sci., 269(5232), 1860-1863. https://doi.org/10.1126/science.269.5232.1860
  19. Hecht-Nielsen, R. (1996), Data manifolds, natural coordinates, replicator neural networks, and optimal source coding, ICONIP-96.
  20. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feed forward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  21. Kahan, M., Gibert, R.J. and Bard, P.Y. (1996), "Influence of seismic waves spatial variability on bridges: a sensitivity analysis", Earthq. Eng. Struct. D., 25(8), 795-814. https://doi.org/10.1002/(SICI)1096-9845(199608)25:8<795::AID-EQE582>3.0.CO;2-X
  22. Kawakami, H. and Sharma, S. (1999), "Statistical study of spatial variation of response spectrum using free field records of dense strong ground motion arrays", Earthq. Eng. Struct. D., 28(11), 1273-1294. https://doi.org/10.1002/(SICI)1096-9845(199911)28:11<1273::AID-EQE866>3.0.CO;2-D
  23. Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K. and Vainio, L. (1976), "A principle of neural associative memory", J. Neurosci., 2(6), 1065-1076.
  24. Lai, S.H. and Fang, M. (2000), "A hierarchical neural network algorithm for robust and automatic windowing of MR images", Artif. Intell. Med., 19(2), 97-119. https://doi.org/10.1016/S0933-3657(00)00041-5
  25. Lee, S.C. and Han, S.W. (2002), "Neural-network-based models for generating artificial earthquakes and response spectra", Comput. Struct., 80(20-21), 1627-1638. https://doi.org/10.1016/S0045-7949(02)00112-8
  26. Liao, S. and Li, J. (2002), "A stochastic approach to site-response component in seismic ground motion coherency model", Soil Dyn. Earthq. Eng., 22, 813-820. https://doi.org/10.1016/S0267-7261(02)00103-3
  27. Liang, J.W., Chaudhuri, S.R. and Shinozuka, M. (2007), "Simulation of nonstationary stochastic process by spectral representation", J. Eng. Mech.-ASCE, 133(6), 616-627. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(616)
  28. Lin, C.C.J. and Ghaboussi, J. (2002), "Generating multiple spectrum compatible accelerograms using stochastic neural networks", Earthq. Eng. Struct. D., 30(7), 1021-1042.
  29. Maheri, M.R. and Ghaffarzadeh, H. (1992), "Asynchronous and non-uniform support excitation analysis of large structures", J. Seismol. Earthq. Eng. JSEE, 4(2-3), 63-74.
  30. Mavrovouniotis, M.L. and Chang, S. (1992), "Hierarchical neural networks", Comput. Chem. Eng., 16, 347-369. https://doi.org/10.1016/0098-1354(92)80053-C
  31. Nazmy, A.S. and Abdel-Ghaffar, A.M. (1992), "Effects of ground motion spatial variability on the response of cable stayed bridges", Earthq. Eng. Struct. D., 21(1), 1-20. https://doi.org/10.1002/eqe.4290210101
  32. Park, D., Sagong, M., Kwak, D.Y. and Jeong, C.G. (2009), "Simulation of tunnel response under spatially varying ground motion", Soil Dyn. Earthq. Eng., 29(11-12), 1417-1424. https://doi.org/10.1016/j.soildyn.2009.05.005
  33. Perotti, F. (1992), "Structural response to non-stationary multiple-support random excitation", Earthq. Eng. Struct. D., 19(4), 513-527.
  34. Stoica, P and Moses, R. (2005), Spectral analysis of signals, Prentice Hall.
  35. Shama, A. (2007), "Simplified procedure for simulating spatially correlated earthquake ground motions", Eng. Struct., 29(2), 248-258. https://doi.org/10.1016/j.engstruct.2006.04.018
  36. Shinozuka, M. (1972), "Monte Carlo solution of structural dynamics", Comput. Struct., 2(5-6), 855-874. https://doi.org/10.1016/0045-7949(72)90043-0
  37. Shinozuka, M.(1987), "Stochastic fields and their digital simulation", Stoch. Meth. Struct. Dyn., Martinus Nijhoff, Dordrecht, The Netherlands.
  38. Specht, D.F. (1991), "A general regression neural network", IEEE T. Neur. Networ., 2(6), 568-576. https://doi.org/10.1109/72.97934
  39. Srivastavaa, L., Singh, S.N. and Sharm, J. (1999), "Estimation of loadability margin using parallel self-organizing hierarchical neural network", Comput. Electr. Eng., 26(2), 151-167.
  40. Yamamura, N. and Tanaka, H. (1990), "Response analysis of flexible MDOF systems for multiple-support seismic excitation", Earthq. Eng. Struct. D., 19, 345-357. https://doi.org/10.1002/eqe.4290190305
  41. Yang, J.N. (1972), "Simulations of random envelope processes", J. Sound Vib., 21(1), 73-85. https://doi.org/10.1016/0022-460X(72)90207-6
  42. Yongxin, W., Yufeng, G. and Dayong, L. (2011), "Simulation of spatially correlated earthquake ground motions for engineering purposes", Earthq. Eng. Eng. Vib., 10(2), 163-173. https://doi.org/10.1007/s11803-011-0055-3
  43. Zenardo, G., Hao, H. and Modena, C. (2002), "Seismic response of multi-span simply supported bridges to spatially varying earthquake ground motion", Earthq. Eng. Struct. D., 31(6), 1325-1345. https://doi.org/10.1002/eqe.166
  44. Zerva, A. (1992), "Seismic ground motion simulations from a class of spatial variability models", Earthq. Eng. Struct. D., 21(4), 351-361. https://doi.org/10.1002/eqe.4290210406
  45. Zerva, A. and Zervas, V. (2002), "Spatial variation of seismic ground motions: An overview", Appl, Mech. Rev., 55(3), 271-297. https://doi.org/10.1115/1.1458013
  46. Zhang, Y.H., Li, Q.S., Lin, J.H. and Williams, F.W. (2009), "Random vibration analysis of long-span structures subjected to spatially varying ground motions", Soil Dyn. Earthq. Eng., 29(4), 620-629. https://doi.org/10.1016/j.soildyn.2008.06.007

피인용 문헌

  1. Reliability Analysis of Infinite Slope Using Metamodels vol.35, pp.3, 2017, https://doi.org/10.1007/s10706-017-0160-9
  2. Monte Carlo simulation for seismic analysis of a long span suspension bridge vol.78, 2014, https://doi.org/10.1016/j.engstruct.2014.08.051
  3. Assessing the Influence of Mining Impacts on Buildings using SVM and MLR Method vol.471, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/471/5/052060