DOI QR코드

DOI QR Code

Combination of isogeometric analysis and extended finite element in linear crack analysis

  • Shojaee, S. (Department of Civil Engineering, Shahid Bahonar University) ;
  • Ghelichi, M. (Department of Civil Engineering, Graduate University Of Technology) ;
  • Izadpanah, E. (Department of Civil Engineering, Shahid Bahonar University)
  • 투고 : 2013.05.11
  • 심사 : 2013.10.02
  • 발행 : 2013.10.10

초록

This paper intends to present an application of isogeometric analysis in crack problems. An isogeometric formula is developed based on NURBS basis functions - enriched and adopted via X-FEM enrichment functions. The proposed method which is represented by the combination of the two above-mentioned methods, first by using NURBS functions models the geometry exactly and then by defining level set function on domain, identifies available discontinuity in elements. Additional DOFs are allocated to elements containing the crack and X-FEM enrichment functions enrich approximate solution. Moreover, a subelement refinement technique is used to improve the accuracy of integration by the Gauss quadrature rule. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of the proposed method during calculation of crack parameters.

키워드

참고문헌

  1. Areias, P.M.A. and Belytschko, T. (2005), "Analysis of three-dimensional crack initiation and propagation using the extended finite element method", Int. J. Numer. Method. Eng., 63(10), 760-788. https://doi.org/10.1002/nme.1305
  2. Bazilevs, Y. and Hughes, T.J.R. (2008), "NURBS-based isogeometric analysis for the computation of flows about rotating components", Comput. Mech., 43(5-8), 143-150. https://doi.org/10.1007/s00466-008-0277-z
  3. Bazilevs, Y. and Akkerman, I. (2010), "Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method", J. Comput. Phys., 229(9), 3402-3414. https://doi.org/10.1016/j.jcp.2010.01.008
  4. Bazilevs, Y., Calo, V.M,, Zhang. Y, and Hughes, T.J.R. (2008), "Isogeometric fluid-structure interaction analysis with applications to arterial blood flow", Comput. Mech., 38(1), 310-322.
  5. Bazilevs, Y., Gohean, J.R,, Hughes, T.J.R., Moser, R.D. and Zhang, Y. (2009), "Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device", Comput. Methods Appl. Mech. Eng., 198(5), 3534-3550. https://doi.org/10.1016/j.cma.2009.04.015
  6. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A. and Sederberg, T.W. (2010), "Isogeometric analysis using T-splines", Comput. Methods Appl. Mech. Eng. 199(4), 229-263 https://doi.org/10.1016/j.cma.2009.02.036
  7. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Methods Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
  8. Belytschko, T. and Black, T. (1999). "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Methods Eng., 45(5), 601- 620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  9. Benson, D.J., Bazilevs, Y., Hsu, M.C. and Hughes, T.J.R. (2010), "Isogeometric shell analysis: the Reissner-Mindlin shell", Comput. Methods Appl. Mech. Eng., 199(5-8), 276-289. https://doi.org/10.1016/j.cma.2009.05.011
  10. Benson, D.J., Bazilevs, Y., Luycker, E.D., Hsu, M.C., Scott, M., Hughes, T.J.R. and Belytschko, T. (2010), "A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM", Int. J. Numer. Methods Eng., 83(6), 765-785.
  11. Chessa, J., Smolinski, P. and Belytschko, T. (2002), "The extended finite element method (XFEM) for solidification problems", Int. J. Numer. Methods Eng., 53(8), 1959-1977. https://doi.org/10.1002/nme.386
  12. Cottrell, J.A., Hughes, T.J.R. and Reali, A. (2007), "Studies of refinement and continuity in isogeometric structural analysis", Comput. Methods Appl. Mech. Eng., 196(41-44), 4160-4183. https://doi.org/10.1016/j.cma.2007.04.007
  13. Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Methods Appl. Mech. Eng., 195(41-43), 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027
  14. Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009), Isogeometric analysis: toward integration of CAD and FEA, WILEY, Singapore.
  15. Cruse, T. (1988), Boundary Element Analysis in Computational Fracture Mechanics, Kluwer, Dordrecht.
  16. Dolbow, J., Mo,Y.N. and Belytschko, T. (2001), "An extended finite element method for modeling crack growth with frictional contact", Comput. Methods Appl. Mech. Eng., 190(1), 6825-6846. https://doi.org/10.1016/S0045-7825(01)00260-2
  17. Dolbow, J. (1999), "An extended finite element method with discontinuous enrichment for applied mechanics", Theor. Appl. Mech., Ph. D. Thesis, Northwestern University, Evanston, IL, USA.
  18. Duarte, C.A., Babuska, I. and Oden, J.T. (1998), "Generalized finite element methods for three dimensional structural mechanics problems", Proceeding of the International Conference on Computational Science, Atlanta, GA. Tech. Science Press, 1(1), 53-58.
  19. Duax, C., Mo, Y.N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary cracks and holes with the extended finite element method", Int. J. Numer. Methods Eng., 48(3), 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
  20. Dofel, M.R., Juttler, B. and Simeon, B. (2010), "Adaptive isogeometric analysis by local hrefinement with T-splines", Comput. Meth. Appl. Mech. Eng., 199(2), 264-275. https://doi.org/10.1016/j.cma.2008.07.012
  21. Echter, R. and Bischoff, M. (2010), "Numerical efficiency, locking and unlocking of NURBS finite elements", Comput. Methods Appl. Mech. Eng., 199(5), 374-382. https://doi.org/10.1016/j.cma.2009.02.035
  22. Gravouil, A., Mo, Y.N. and Belytschko, T. (2002), "Non-planar 3D crack growth by the extended finite element and the level sets-Part II: level set update", Int. J. Numer. Methods Eng., 53(3), 2569-2586. https://doi.org/10.1002/nme.430
  23. Griffith, A.A., Lond, R. and Ser, A. (1920), "The phenomena of rapture and flow in solids", 221, 163-198.
  24. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(1), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  25. Hughes, T.J.R., Reali, A. and Sangalli, G. (2008), "Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS", Comput. Methods Appl. Mech. Eng., 197(49-50), 4104-4124. https://doi.org/10.1016/j.cma.2008.04.006
  26. Hughes, T.J.R., Reali, A. and Sangalli, G. (2010), "Efficient quadrature for NURBS-based isogeometric analysis", Comput. Methods Appl. Mech. Eng., 199(5-8), 301-313. https://doi.org/10.1016/j.cma.2008.12.004
  27. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364.
  28. Ji, H., Chopp, D. and Dolbow, J. (2002), "A hybrid extended finite element/level set method for modeling phase transformations", Int. J. Numer. Methods Eng., 54(8), 1209-1233. https://doi.org/10.1002/nme.468
  29. Krongauz, B.T. (1998), "EFG approximation with discontinuous derivatives", Int. J. Numer. Methods Eng., 41(7), 1215-1233. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
  30. Laborde, P., Pommier, J., Renard, Y. and Salaun, M. (2005), "High-order extended finite element method for cracked domains", Int. J. Numer. Methods Eng., 64(3), 354-381. https://doi.org/10.1002/nme.1370
  31. Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T. and Hughes, T.J.R. (2010), "Robustness of isogeometric structural discretizations under severe mesh distortion", Comput. Meth. Appl. Mech. Eng., 199(9), 357-373. https://doi.org/10.1016/j.cma.2009.01.022
  32. Luycker, E.D., Benson, D.J., Belytschko, T., Bazileves, Y. and Hsu, M.C. (2011), "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Methods Eng., 87(6), 541-565. https://doi.org/10.1002/nme.3121
  33. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Methods Appl. Mech. Eng., 139(1-4), 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  34. Mergheim, J., Kuhl, E. and Steinmann, P. (2005), "A finite element method for the computational modeling of cohesive cracks", Int. J. Numer. Methods Eng., 63(2), 276-289. https://doi.org/10.1002/nme.1286
  35. Motamedi, D. and Mohammadi, S. (2010), "Dynamic analysis of fixed cracks in composites by the extended finite element method", Eng. Fract. Mech., 77(17), 3373-3393. https://doi.org/10.1016/j.engfracmech.2010.08.011
  36. Mo, Y.N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Methods Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  37. Mo, Y.N., Gravouil, A. and Belytschko, T. (2002), "Non-planar 3D crack growth by the extended finite element and the level sets-Part I: mechanical model", Int. J. Numer. Methods Eng., 53(11), 2549-2568. https://doi.org/10.1002/nme.429
  38. Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Methods Appl. Mech. Eng., 153(1-2), 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
  39. Shojaee, S. and Valizadeh, N. (2012), "NURBS-based isogeometric analysis for thin plate problems", Struct. Eng. Mech., 5(41), 617-632.
  40. Sukumar, N., Chopp, D.L., Mo, Y.N. and Belytschko, T. (2001), "Modeling holes and inclusions by level sets in the extended finite element method", Comput. Methods Appl. Mech. Eng., 190(46-47), 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8
  41. Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method. Part II: Numerical applications", Int. J. Solids Struct., 40(26), 7539-7552. https://doi.org/10.1016/j.ijsolstr.2003.08.001
  42. Zi, G. and Belytschko, T. (2003), "New crack-tip elements for XFEM and applications to cohesive cracks", Int. J. Numer. Meth. Eng., 57(15), 2221-2240. https://doi.org/10.1002/nme.849

피인용 문헌

  1. CRACK ANALYSIS IN ORTHOTROPIC MEDIA USING COMBINATION OF ISOGEOMETRIC ANALYSIS AND EXTENDED FINITE ELEMENT vol.06, pp.06, 2014, https://doi.org/10.1142/S1758825114500689
  2. Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1389
  3. Crack analysis in media with orthotropic Functionally Graded Materials using extended Isogeometric analysis vol.147, 2015, https://doi.org/10.1016/j.engfracmech.2015.08.025
  4. NURBS enhanced HIFEM: A fully mesh-independent method with zero geometric discretization error vol.120, 2016, https://doi.org/10.1016/j.finel.2016.06.007
  5. New higher-order triangular shell finite elements based on the partition of unity vol.73, pp.1, 2013, https://doi.org/10.12989/sem.2020.73.1.001
  6. A review on XIGA method for computational fracture mechanics applications vol.230, pp.None, 2020, https://doi.org/10.1016/j.engfracmech.2020.107001