참고문헌
- Areias, P.M.A. and Belytschko, T. (2005), "Analysis of three-dimensional crack initiation and propagation using the extended finite element method", Int. J. Numer. Method. Eng., 63(10), 760-788. https://doi.org/10.1002/nme.1305
- Bazilevs, Y. and Hughes, T.J.R. (2008), "NURBS-based isogeometric analysis for the computation of flows about rotating components", Comput. Mech., 43(5-8), 143-150. https://doi.org/10.1007/s00466-008-0277-z
- Bazilevs, Y. and Akkerman, I. (2010), "Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method", J. Comput. Phys., 229(9), 3402-3414. https://doi.org/10.1016/j.jcp.2010.01.008
- Bazilevs, Y., Calo, V.M,, Zhang. Y, and Hughes, T.J.R. (2008), "Isogeometric fluid-structure interaction analysis with applications to arterial blood flow", Comput. Mech., 38(1), 310-322.
- Bazilevs, Y., Gohean, J.R,, Hughes, T.J.R., Moser, R.D. and Zhang, Y. (2009), "Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device", Comput. Methods Appl. Mech. Eng., 198(5), 3534-3550. https://doi.org/10.1016/j.cma.2009.04.015
- Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A. and Sederberg, T.W. (2010), "Isogeometric analysis using T-splines", Comput. Methods Appl. Mech. Eng. 199(4), 229-263 https://doi.org/10.1016/j.cma.2009.02.036
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Methods Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
- Belytschko, T. and Black, T. (1999). "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Methods Eng., 45(5), 601- 620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Benson, D.J., Bazilevs, Y., Hsu, M.C. and Hughes, T.J.R. (2010), "Isogeometric shell analysis: the Reissner-Mindlin shell", Comput. Methods Appl. Mech. Eng., 199(5-8), 276-289. https://doi.org/10.1016/j.cma.2009.05.011
- Benson, D.J., Bazilevs, Y., Luycker, E.D., Hsu, M.C., Scott, M., Hughes, T.J.R. and Belytschko, T. (2010), "A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM", Int. J. Numer. Methods Eng., 83(6), 765-785.
- Chessa, J., Smolinski, P. and Belytschko, T. (2002), "The extended finite element method (XFEM) for solidification problems", Int. J. Numer. Methods Eng., 53(8), 1959-1977. https://doi.org/10.1002/nme.386
- Cottrell, J.A., Hughes, T.J.R. and Reali, A. (2007), "Studies of refinement and continuity in isogeometric structural analysis", Comput. Methods Appl. Mech. Eng., 196(41-44), 4160-4183. https://doi.org/10.1016/j.cma.2007.04.007
- Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Methods Appl. Mech. Eng., 195(41-43), 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027
- Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009), Isogeometric analysis: toward integration of CAD and FEA, WILEY, Singapore.
- Cruse, T. (1988), Boundary Element Analysis in Computational Fracture Mechanics, Kluwer, Dordrecht.
- Dolbow, J., Mo,Y.N. and Belytschko, T. (2001), "An extended finite element method for modeling crack growth with frictional contact", Comput. Methods Appl. Mech. Eng., 190(1), 6825-6846. https://doi.org/10.1016/S0045-7825(01)00260-2
- Dolbow, J. (1999), "An extended finite element method with discontinuous enrichment for applied mechanics", Theor. Appl. Mech., Ph. D. Thesis, Northwestern University, Evanston, IL, USA.
- Duarte, C.A., Babuska, I. and Oden, J.T. (1998), "Generalized finite element methods for three dimensional structural mechanics problems", Proceeding of the International Conference on Computational Science, Atlanta, GA. Tech. Science Press, 1(1), 53-58.
- Duax, C., Mo, Y.N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary cracks and holes with the extended finite element method", Int. J. Numer. Methods Eng., 48(3), 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
- Dofel, M.R., Juttler, B. and Simeon, B. (2010), "Adaptive isogeometric analysis by local hrefinement with T-splines", Comput. Meth. Appl. Mech. Eng., 199(2), 264-275. https://doi.org/10.1016/j.cma.2008.07.012
- Echter, R. and Bischoff, M. (2010), "Numerical efficiency, locking and unlocking of NURBS finite elements", Comput. Methods Appl. Mech. Eng., 199(5), 374-382. https://doi.org/10.1016/j.cma.2009.02.035
- Gravouil, A., Mo, Y.N. and Belytschko, T. (2002), "Non-planar 3D crack growth by the extended finite element and the level sets-Part II: level set update", Int. J. Numer. Methods Eng., 53(3), 2569-2586. https://doi.org/10.1002/nme.430
- Griffith, A.A., Lond, R. and Ser, A. (1920), "The phenomena of rapture and flow in solids", 221, 163-198.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(1), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Hughes, T.J.R., Reali, A. and Sangalli, G. (2008), "Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS", Comput. Methods Appl. Mech. Eng., 197(49-50), 4104-4124. https://doi.org/10.1016/j.cma.2008.04.006
- Hughes, T.J.R., Reali, A. and Sangalli, G. (2010), "Efficient quadrature for NURBS-based isogeometric analysis", Comput. Methods Appl. Mech. Eng., 199(5-8), 301-313. https://doi.org/10.1016/j.cma.2008.12.004
- Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364.
- Ji, H., Chopp, D. and Dolbow, J. (2002), "A hybrid extended finite element/level set method for modeling phase transformations", Int. J. Numer. Methods Eng., 54(8), 1209-1233. https://doi.org/10.1002/nme.468
- Krongauz, B.T. (1998), "EFG approximation with discontinuous derivatives", Int. J. Numer. Methods Eng., 41(7), 1215-1233. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
- Laborde, P., Pommier, J., Renard, Y. and Salaun, M. (2005), "High-order extended finite element method for cracked domains", Int. J. Numer. Methods Eng., 64(3), 354-381. https://doi.org/10.1002/nme.1370
- Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T. and Hughes, T.J.R. (2010), "Robustness of isogeometric structural discretizations under severe mesh distortion", Comput. Meth. Appl. Mech. Eng., 199(9), 357-373. https://doi.org/10.1016/j.cma.2009.01.022
- Luycker, E.D., Benson, D.J., Belytschko, T., Bazileves, Y. and Hsu, M.C. (2011), "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Methods Eng., 87(6), 541-565. https://doi.org/10.1002/nme.3121
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Methods Appl. Mech. Eng., 139(1-4), 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
- Mergheim, J., Kuhl, E. and Steinmann, P. (2005), "A finite element method for the computational modeling of cohesive cracks", Int. J. Numer. Methods Eng., 63(2), 276-289. https://doi.org/10.1002/nme.1286
- Motamedi, D. and Mohammadi, S. (2010), "Dynamic analysis of fixed cracks in composites by the extended finite element method", Eng. Fract. Mech., 77(17), 3373-3393. https://doi.org/10.1016/j.engfracmech.2010.08.011
- Mo, Y.N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Methods Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Mo, Y.N., Gravouil, A. and Belytschko, T. (2002), "Non-planar 3D crack growth by the extended finite element and the level sets-Part I: mechanical model", Int. J. Numer. Methods Eng., 53(11), 2549-2568. https://doi.org/10.1002/nme.429
- Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Methods Appl. Mech. Eng., 153(1-2), 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
- Shojaee, S. and Valizadeh, N. (2012), "NURBS-based isogeometric analysis for thin plate problems", Struct. Eng. Mech., 5(41), 617-632.
- Sukumar, N., Chopp, D.L., Mo, Y.N. and Belytschko, T. (2001), "Modeling holes and inclusions by level sets in the extended finite element method", Comput. Methods Appl. Mech. Eng., 190(46-47), 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8
- Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method. Part II: Numerical applications", Int. J. Solids Struct., 40(26), 7539-7552. https://doi.org/10.1016/j.ijsolstr.2003.08.001
- Zi, G. and Belytschko, T. (2003), "New crack-tip elements for XFEM and applications to cohesive cracks", Int. J. Numer. Meth. Eng., 57(15), 2221-2240. https://doi.org/10.1002/nme.849
피인용 문헌
- CRACK ANALYSIS IN ORTHOTROPIC MEDIA USING COMBINATION OF ISOGEOMETRIC ANALYSIS AND EXTENDED FINITE ELEMENT vol.06, pp.06, 2014, https://doi.org/10.1142/S1758825114500689
- Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1389
- Crack analysis in media with orthotropic Functionally Graded Materials using extended Isogeometric analysis vol.147, 2015, https://doi.org/10.1016/j.engfracmech.2015.08.025
- NURBS enhanced HIFEM: A fully mesh-independent method with zero geometric discretization error vol.120, 2016, https://doi.org/10.1016/j.finel.2016.06.007
- New higher-order triangular shell finite elements based on the partition of unity vol.73, pp.1, 2013, https://doi.org/10.12989/sem.2020.73.1.001
- A review on XIGA method for computational fracture mechanics applications vol.230, pp.None, 2020, https://doi.org/10.1016/j.engfracmech.2020.107001