References
- Asp, L., Sjoogren, A. and Greenhalgh, E. (2001), "Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading", J. Compos. Techol. Res., 23, 55-68. https://doi.org/10.1520/CTR10914J
- Benzeggagh, M. and Kenane, M. (1996), "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus", J. Compos. Sci. Techol., 56, 439-49. https://doi.org/10.1016/0266-3538(96)00005-X
- Blanco, N., Gamstedt, E., Asp, L. and Costa, J. (2005), "Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading", Int. J. Solids. Struct., 41, 4219-4235.
- Camanho, P. and Davila, C. (2002), "Mixed-mode de-cohesion finite elements for the simulation of delamination in composite materials", NASA Report-No. TM-2002-211737.
- Falk, M., Needleman, A. and Rice, J. (2001), "A critical evaluation of cohesive zone models of dynamic fracture", J. de Physique IV, Proceedings, 543-550.
- Griffith, A. (1921), "The phenomena of rupture and flow in solids", Philosophical Transactions of the Royal Society of London, 221, 163-198. https://doi.org/10.1098/rsta.1921.0006
- Hosseini-Toudeshky, H., Hosseini, S. and Mohammadi, B. (2010a), "Progressive delamination growth analysis using discontinuous layered element", J. Compos. Struct., 92, 883-890. https://doi.org/10.1016/j.compstruct.2009.09.028
- Hosseini-Toudeshky, H., Hosseini, S. and Mohammadi, B. (2010b), "Delamination buckling growth in laminated composites using layer-wise interface element", J. Compos. Struct. , 92, 1846-1856. https://doi.org/10.1016/j.compstruct.2010.01.013
- Hosseini-Toudeshky, H., Hosseini, S. and Mohammadi, B. (2010c), "Buckling and Delamination Growth Analysis of Composite Laminates Containing Embedded Delaminations", Appl. Compos. Mater., 17, 95-109. https://doi.org/10.1007/s10443-009-9092-8
- Hosseini-Toudeshky, H., Jasemzadeh, A. and Mohammadi, B. (2011), "FatigueDebonding Analysis of Repaired Aluminium Panels by Composite Patch using Interface Elements", Appl. Compos. Mater., 18, 571-584. https://doi.org/10.1007/s10443-011-9229-4
- Juntti, M., Asp, L. and Olsson, R. (1999), "Assessment of evaluation methods for the mixed-mode bending test", J. Comp. Technol. Res., 21, 37-48. https://doi.org/10.1520/CTR10611J
- Kardomateas, G., Pelegry, A. and Malik, A. (1995), "Growth of Internal Delamination under Cyclic Compression in Composite Plates", J. Mech. Phys. Solids, 43(6), 847-868. https://doi.org/10.1016/0022-5096(95)00012-8
- Krueger, R. (2002), "The virtual crack closure technique: history, approach and applications", NASA CR-2002-211628.
- Mi, U., Crisfield, M. and Davies, G. (1998), "Progressive delamination using interface elements", J. Compos. Mater., 32, 1246-1272. https://doi.org/10.1177/002199839803201401
- Rice, J.R., Dziewonski, A.M. and Boschi, E. (1980), P"hysics of the Earth's Interior, the mechanics of earthquake rupture", Proceedings of the International School of Physics, Italian Physical Society, Course LXXVIII, Varenna, Italy.
- Robinson, P., Galvanetto, U., Tumino, D. and Bellucci, G. (2005), "Numerical Simulation of Fatigue-driven Delamination using Interface Elements", Int. J. Numer. Meth. Eng., 63, 1824-1848. https://doi.org/10.1002/nme.1338
- Rybicki, E. and Kanninen, M. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", J. Eng. Fract. Mech., 9,931-938. https://doi.org/10.1016/0013-7944(77)90013-3
- Turon, A., Costa, J., Camanho, P. and Davila, C. (2007a), "Simulation of delamination in composites under high-cycle fatigue", Compo. Part A: Appl. Sci. Manuf., 38(11), 2270-2282. https://doi.org/10.1016/j.compositesa.2006.11.009
- Turon, A., Davila, C., Camanho, P. and Costa, J. (2007b), "An engineering solution for solving mesh size effects in the simulation of delamination with cohesive zone models", J. Eng. Fract. Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025
- Wagner, W. and Balzani, C. (2008), "An Interface Element for the Simulation of Delamination in Unidirectional Fiber-reinforced Composite Laminates", J Eng. Fract. Mech., 75, 2597-2615. https://doi.org/10.1016/j.engfracmech.2007.03.013
- Ye, L. (1988), "Role of matrix resin in delamination onset and growth in composite laminates", J. Compos Sci. Technol., 33, 257-277. https://doi.org/10.1016/0266-3538(88)90043-7
- Zhang, Y. and Wang, S. (2009a), "Buckling, post-buckling and delamination propagation in debonded composite laminates part1: theoretical development", J. Compos. Struct., 88, 121-130. https://doi.org/10.1016/j.compstruct.2008.02.013
- Zhang, Y. and Wang, S. (2009b), "Buckling post-buckling and delamination propagation in debonded composite laminates part2: numerical application", J. Compos. Struct., 88, 131-146. https://doi.org/10.1016/j.compstruct.2008.02.012
Cited by
- Progressive debonding analysis of composite blade root joint of wind turbines under fatigue loading vol.120, 2015, https://doi.org/10.1016/j.compstruct.2014.10.025
- In-situ fatigue life prognosis for composite laminates based on stiffness degradation vol.132, 2015, https://doi.org/10.1016/j.compstruct.2015.05.006
- Delamination growth analysis in composite laminates subjected to low velocity impact vol.17, pp.4, 2014, https://doi.org/10.12989/scs.2014.17.4.387
- Viscoelastic-damage interface model formulation with friction to simulate the delamination growth in mode II shear vol.21, pp.4, 2017, https://doi.org/10.1007/s11043-017-9341-4
- Low-cycle fatigue delamination initiation and propagation in fibre metal laminates vol.38, pp.6, 2015, https://doi.org/10.1111/ffe.12254
- Modified DEBA for determining size dependent shear fracture energy of laminates vol.28, pp.1, 2018, https://doi.org/10.12989/scs.2018.28.1.111