References
- Al-Rub, R.K.A. and Kim, S.M. (2010), "Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture", Eng Fract Mech, 77(10), 1577-1603. https://doi.org/10.1016/j.engfracmech.2010.04.007
- Ayari, M.L. and Saouma, V.E. (1990), "A fracture mechanics based seismic analysis of concrete gravity dams", Eng Fract Mech, 35, 587-598. https://doi.org/10.1016/0013-7944(90)90233-7
- Babu, R., Benipal, G.S. and Singh, A.K. (2005), "Constitutive modeling of concrete: An overview", Asian J. Civil Eng., 6(4), 211-246.
- Bazant, Z.P. (2002), "Concrete fracture models: testing and practice", Eng Fract Mech, 69, 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4
- Bhattacharjee, S.S. and Leger, P. (1994), "Application of NLFM models to predict cracking in concrete gravity dams", Struct. Eng., 120(4), 1255-1271. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1255)
- Bigoni, D. and Piccolroaz, A. (2004), "Yield criteria for quasi brittle and frictional materials", Solid. Struct., 41, 2855-2878. https://doi.org/10.1016/j.ijsolstr.2003.12.024
- Briihwiler, E. and Wittmann, F.H. (1990), "Failure of dam concrete subjected to seismic loading conditions", Eng. Fract. Mech., 35, 565-571. https://doi.org/10.1016/0013-7944(90)90231-5
- Broujerdian, V. and Kazemi, M.T. (2010), "Smeared rotating crack model for reinforced concrete membrane elements", ACI Struct. J., 107(4), 411-418.
- Calayir, Y. and Karaton, M. (2005), "A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems", Soil Dyn. Earthq. Eng., 25(11), 857-869. https://doi.org/10.1016/j.soildyn.2005.05.003
- Calayir, Y. and Karaton, M. (2005), "Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction", Comput. Struct., 83(19-20), 1595-1606. https://doi.org/10.1016/j.compstruc.2005.02.003
- Carpinteri, A., Valente, S.V., Ferrara, G. and Imperato, L. (1992), "Experimental and numerical fracture modeling of a gravity dam", Proceedings of the 1st International Conference on Fracture Mechanics of Concrete Structures, Breckenridge, Colorado.
- Chopra, A.K. and Chakrabarti, P. (1973), "The Koyna earthquake and the damage to Koyna dam", Bul. Seismol. Soc. Am., 63, 381-397.
- Cicekli, U., Voyiadjis, G.Z. and Abu Al-Rub, R.K. (2007), "A plasticity and anisotropic damage model for plain concrete", Int. J. Plasticity, 23, 1874-1900. https://doi.org/10.1016/j.ijplas.2007.03.006
- Duan, K., Hu, X. and Wittmann, F.H. (2007), "Size effect on specific fracture energy of concrete", Eng. Fract. Mech., 74(102), 87-96. https://doi.org/10.1016/j.engfracmech.2006.01.031
- Duan, K., Hu, X. and Wittmann, F.H. (2003), "Boundary effect on concrete fracture induced by non-constant fracture energy distribution", Eng. Fract. Mech., 70(16), 2257-2268. https://doi.org/10.1016/S0013-7944(02)00223-0
- Einsfeld, R.A. and Velasco, M.S.L. (2006), "Measurement of the ratio GF/Gf for numerical analysis of concrete structures", Latin Am. J. Solid. Struct., 3, 361-376.
- Federal Energy Regulatory Commission (FERC). (1999), "Engineering guidelines for the evaluation of hydropower projects, Chapter 11: Arch Dams", Washington, USA.
- Ghaemian, M. and Ghobarah, A, (1999), "Nonlinear seismic response of concrete gravity dams with dam-reservoir interaction", Eng. Struct., 21, 306-315. https://doi.org/10.1016/S0141-0296(97)00208-3
- Ghrib, F. and Tinawi, R. (1995), "Nonlinear behavior of concrete dams using damage mechanics", Eng. Mech., ASCE, 121(4), 513-526. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:4(513)
- Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", Int. J. Solid. Struct., 43(22-23), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032
- Guanglun, W., Pekau, O.A., Chuhan, Z. and Shaomin, W. (2000), "Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics", Eng. Fract. Mech., 65(1), 67-87. https://doi.org/10.1016/S0013-7944(99)00104-6
- Hal, J.F. (1988), "The dynamic and earthquake behavior of experimental behavior and observational evidence", Soil Dyn. Earthq. Eng., 7(2), 58-121. https://doi.org/10.1016/S0267-7261(88)80001-0
- Hariri-Ardebili, M.A. and Mirzabozorg, H. (2013), "A comparative study of the seismic stability of coupled arch dam-foundation-reservoir systems using infinite elements and viscous boundary models", J. Struct. Stabil. Dyn., 13(6), DOI: 10.1142/S0219455413500326.
- Hariri-Ardebili, M.A., Mirzabozorg, H. and Kianoush, M.R. (2013), "Seismic analysis of high arch dams considering contraction-peripheral joints coupled effects", Centr. Eur. J. Eng., 3(3), 549-564. https://doi.org/10.2478/s13531-013-0111-z
- Hariri-Ardebili, M.A., Mirzabozorg, H. and Ghasemi, A. (2013), "Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system", Coupl. Syst. Mech., 2(1), 85-110. https://doi.org/10.12989/csm.2013.2.1.085
- Hariri-Ardebili, M.A. and Mirzabozorg, H. (2012), "Seismic performance evaluation and analysis of major arch dams considering material and joint nonlinearity effects", ISRN Civil Eng., Article ID 681350.
- Hariri-Ardebili, M.A. and Mirzabozorg, H. (2012), "Effects of near-fault ground motions in seismic performance evaluation of a symmetry arch dam", Soil Mech. Found. Eng., 49(5), 192-199. https://doi.org/10.1007/s11204-012-9189-1
- Heinrich, C. and Waasy, A.M. (2012), "Investigation of progressive damage and fracture in laminated composites using the smeared crack approach", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii.
- Hu, X. and Duan, K. (2004), "Influence of fracture process zone height on fracture energy of concrete", Cement Concrete Res., 34(8), 1321-1330. https://doi.org/10.1016/j.cemconres.2003.12.027
- Labadi, Y. and Hannachi, N.E. (2005), "Numerical simulation of brittle damage in concrete", Int. J. Strength . 37(3), 268-281.
- Lohrasbi, A.R. and Attarnejad, R. (2008), "Crack growth in concrete gravity dams based on discrete crack method", Am J. Eng. Appl. Sci, 1(4), 318-323. https://doi.org/10.3844/ajeassp.2008.318.323
- Malvar, L.J. and Fourney, M.E. (1990), "A three dimensional application of the smeared crack approach", Eng. Fract. Mech., 35(1-3), 251-260. https://doi.org/10.1016/0013-7944(90)90203-S
- Malvar, L.J. and Warren, G.E. (1988), "Fracture energy for three-point-bend tests on single-edge-notched beams", Exp. Mech, 45, 266-272.
- Menetrey, P.H. and Willam, K.J. (1995), "Tri-axial failure criterion for concrete and its generalization", Int. J. ACI Struct, 92, 311-318.
- Mirzabozorg, H., Akbari, M. and Hariri-Ardebili, M.A. (2012), "Wave passage and incoherency effects on seismic response of high arch dams", Earthq. Eng Eng Vib, 11(4), 567-578. https://doi.org/10.1007/s11803-012-0142-0
- Mirzabozorg, H. and Ghaemian, M. (2005), "Nonlinear behavior of mass concrete in three-dimensional problems using smeared crack approach", Earthq Eng Struct Dyn, 34, 247-269. https://doi.org/10.1002/eqe.423
- Mirzabozorg, H., Ghaemian, M. and Kianoush, R. (2004), "Damage mechanics approach in seismic analysis of concrete gravity dams including dam-reservoir interaction", Eur Earthqe Eng, XVIII(3), 17-24.
- Mirzabozorg, H., Khaloo, A.R., Ghaemian, M. and Jalalzadeh, B. (2007), "Non-uniform cracking in smeared crack approach for seismic analysis of concrete dams in 3D space", Earthq Eng. Eng. Seism., 2, 48-57.
- Moslera, J. and Meschke, G. (2004), "Computational failure mechanics embedded crack vs. smeared crack models: a comparison of element wise discontinuous crack path approaches with emphasis on mesh bias", Comput Meth. App. Mech. Eng., 193(30-32), 3351-3375. https://doi.org/10.1016/j.cma.2003.09.022
- Omidi, O., Valliappan, S. and Lotfi, V. (2013), "Seismic cracking of concrete gravity dams by plastic-damage model using different damping mechanisms", Finite Elem. Anal. Des., 63, 80-97. https://doi.org/10.1016/j.finel.2012.08.008
- Pan, J., Zhang, C., Xu, Y. and Jin, F. (2011), "A comparative study of the different procedures for seismic cracking analysis of concrete dams", Soil Dyn. Earthq. Eng., 31(11), 1594-1606. https://doi.org/10.1016/j.soildyn.2011.06.011
- PEER ground motion database (2010), http://peer.berkeley.edu/peer_ground_motion_database, Beta version, University of California, Berkeley, CA, USA.
- Phama, H.B., Al-Mahaidia, R. and Saouma, V. (2006), "Modeling of CFRP-concrete bond using smeared and discrete cracks", Proceedings of the 13th International Conference on Composite Structures, 75(1-4), 145-150.
- RILEM TC 50-FMC (1985), "Determination of fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
- Saini, S.S. and Krishna, J. (1974), "Overturning of top profile of the Koyna dam during severe ground motion", Earthq. Eng. Struct. Dyn., 2(3), 207-217.
- Saouma, V.E. and Morris, D. (1998), "Application of fracture mechanics to concrete dams: a detailed case study". Dam Eng., 9(4), 321-344.
- Saouma, V.E. and Milner, D. (1996), "On why fracture mechanics should be used in dam safety evaluation", Dam Eng., 7(3), 215-231.
- Suryanto, B., Nagai, K. and Maekawa, K. (2010), "Smeared-crack modeling of R/ECC membranes incorporating an explicit shear transfer model", J. Adv. Concrete Tech., 8(3), 315-326. https://doi.org/10.3151/jact.8.315
- US Army Corps of Engineers (USACE) (2007), "EM 1110-2-6053: Earthquake design and evaluation of concrete hydraulic structures", Washington, USA.
- Voyiadjis, G.Z., Taqieddin, Z.N. and Kattan, P.I. (2009), "Theoretical formulation of a coupled elastic-plastic anisotropic damage model for concrete using the strain energy equivalence concept", Int. J. Damage Mech., 18, 603-638. https://doi.org/10.1177/1056789508092399
- Voyiadjis, G.Z. and Taqieddin, Z.N. (2009), "Elastic plastic and damage model for concrete materials, Part I: Theoretical formulation", Int. J. Struct. Change. Solid. - Mech. Appl., 1(1), 31-59.
- Weihe, S., Kroplin, B. and De Borst. R. (1998), "Classification of smeared crack models based on material and structural properties", Int. J. Solid. Struct., 35(12), 1289-1308. https://doi.org/10.1016/S0020-7683(97)00104-2
- Xue, X. and Yang, X. (2013), "A damage model for concrete under cyclic actions", Int. J. Damage Mech., DOI: 10.1177/1056789513487084.
- Yu, R.C., Ruiz, G. and Chaves, E.W.V. (2008), "A comparative study between discrete and continuum models to simulate concrete fracture", Eng. Fract. Mech., 75, 117-127. https://doi.org/10.1016/j.engfracmech.2007.03.031
Cited by
- Seismic evaluation of existing arch dams and massed foundation effects vol.56, pp.1, 2016, https://doi.org/10.1016/j.sandf.2016.01.002
- FEM-based parametric analysis of a typical gravity dam considering input excitation mechanism vol.84, 2016, https://doi.org/10.1016/j.soildyn.2016.01.013
- Arrival direction effects of travelling waves on nonlinear seismic response of arch dams vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.179
- A fast method to evaluate upper region strength safety of gravity dam 2018, https://doi.org/10.1007/s12205-017-0742-3
- Seismic cracking and instability of concrete dams: Smeared crack approach vol.52, 2015, https://doi.org/10.1016/j.engfailanal.2015.02.020
- Seismic behavior of concrete gravity dams vol.1, pp.2, 2016, https://doi.org/10.12989/acd.2016.1.2.195
- Impact of Foundation Nonlinearity on the Crack Propagation of High Concrete Dams vol.51, pp.2, 2014, https://doi.org/10.1007/s11204-014-9257-9
- Finite element modelling of a nuclear containment structure subjected to high internal pressure vol.153, 2017, https://doi.org/10.1016/j.ijpvp.2017.05.004
- Integrative seismic safety evaluation of a high concrete arch dam vol.67, 2014, https://doi.org/10.1016/j.soildyn.2014.08.014
- Cracking Behavior of a Concrete Arch Dam with Weak Upper Abutment vol.2017, 2017, https://doi.org/10.1155/2017/6541975
- Finite Element-Smeared Crack Combined Algorithm based Bridge Corbel Analysis vol.189, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/189/2/022017
- Seismic risk prioritization of a large portfolio of dams: Revisited vol.10, pp.9, 2018, https://doi.org/10.1177/1687814018802531
- Application of Principles of Linear Elastic Fracture Mechanics for Concrete Structures: A Numerical Study vol.877, pp.1662-7482, 2018, https://doi.org/10.4028/www.scientific.net/AMM.877.282
- Geometrical dimensions effects on the seismic response of concrete gravity dams vol.6, pp.3, 2013, https://doi.org/10.12989/acc.2018.6.3.269
- Seismic Improvement of Gravity Dams Using Isolation Layer in Contact Area of Dam-Reservoir in Smeared Crack Approach vol.43, pp.2, 2013, https://doi.org/10.1007/s40996-018-0111-6
- Analysis of the Effect of Initial Crack Length on Concrete Members Using Extended Finite Element Method vol.17, pp.10, 2019, https://doi.org/10.1007/s40999-019-00413-6
- Simulation of Particle-Fluid Interaction in Fractal Fractures Based on the Immersed Boundary-Lattice Boltzmann Method vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/6695623
- Quantitative characterization of single-phase flow through rough-walled fractures with variable apertures vol.6, pp.3, 2013, https://doi.org/10.1007/s40948-020-00166-w
- A System Identification-Based Damage-Detection Method for Gravity Dams vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6653254
- Damage index based seismic risk generalization for concrete gravity dams considering FFDI vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.053
- Seismic fracture analysis of concrete arch dams incorporating the loading rate dependent size effect of concrete vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.169
- Post-peak behavior of concrete dams based on nonlinear finite element analyses vol.130, pp.None, 2021, https://doi.org/10.1016/j.engfailanal.2021.105778