DOI QR코드

DOI QR Code

Analysis of thermo-rheologically complex structures with geometrical nonlinearity

  • Mahmoud, Fatin F. (Department of Mechanical Design and Production Engineering, College of Engineering, Zagazig University) ;
  • El-Shafei, Ahmed G. (Department of Mechanical Design and Production Engineering, College of Engineering, Zagazig University) ;
  • Attia, Mohamed A. (Department of Mechanical Design and Production Engineering, College of Engineering, Zagazig University)
  • Received : 2012.05.12
  • Accepted : 2013.07.03
  • Published : 2013.07.10

Abstract

A finite element computational procedure for the accurate analysis of quasistatic thermorheological complex structures response is developed. The geometrical nonlinearity, arising from large displacements and rotations (but small strains), is accounted for by the total Lagrangian description of motion. The Schapery's nonlinear single-integral viscoelastic constitutive model is modified for a time-stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are incrementalized leading to a recursive relationship and thereby the resulting finite element equations necessitate data storage from the previous time step only, and not the entire deformation history. The Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite element equations. The developed numerical model is verified with the previously published works and a good agreement with them is found. The applicability of the developed model is demonstrated by analyzing two examples with different thermal/mechanical loading histories.

Keywords

References

  1. Areias, P. and Matous, K. (2008), "Finite element formulation for modeling nonlinear viscoelastic elastomers", Comput. Meth. Appl. Mech. Eng., 197(51), 4702-4717. https://doi.org/10.1016/j.cma.2008.06.015
  2. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA.
  3. Bonet, J. (2001), "Large strain viscoelastic constitutive models", Int. J. Solids and Struct., 38(17), 2953-2968. https://doi.org/10.1016/S0020-7683(00)00215-8
  4. Christensen, R. (1982), Theory of Viscoelasticity: An Introduction, Access Online via Elsevier.
  5. Feng, W.W. (1992), "A recurrence formula for viscoelastic constitutive equations", Int. J. Non Linear Mech., 27(4), 675-678. https://doi.org/10.1016/0020-7462(92)90073-G
  6. Ferry, J.D. (1980), Viscoelastic Properties of Polymers, Wiley, New York.
  7. Fung, Y.Y.C. and Tong, P. (2001), Classical and Computational Solid Mechanics, World Scientific.
  8. Guedes, R.M. (2010), "Nonlinear viscoelastic analysis of thick-walled cylindrical composite pipes", Int. J. of Mech. Sci., 52(8), 1064-1073. https://doi.org/10.1016/j.ijmecsci.2010.04.003
  9. Haj-Ali, R.M. and Muliana, A.H. (2004), "Numerical finite element formulation of the Schapery non-linear viscoelastic material model", Int. J. Numer. Meth. Eng., 59(1), 25-45. https://doi.org/10.1002/nme.861
  10. Harper, B. and Weitsman, Y. (1985), "Characterization method for a class of thermorheologically complex materials", J. Rheol., 29, 49-66. https://doi.org/10.1122/1.549786
  11. Holzapfel, G. and Reiter, G. (1995), "Fully coupled thermomechanical behaviour of viscoelastic solids treated with finite elements", Int. J. Eng. Sci., 33(7), 1037-1058. https://doi.org/10.1016/0020-7225(94)00072-R
  12. Johnson, A.R. and Chen, T.K. (2005), "Approximating thermo-viscoelastic heating of largely strained solid rubber components", Comput. Meth. Appl. Mech. Eng., 194(2), 313-325. https://doi.org/10.1016/j.cma.2004.03.014
  13. Khan, A.S., Baig, M., Hamid, S. and Zhang, H. (2010), "Thermo-mechanical large deformation responses of Hydrogenated Nitrile Butadiene Rubber (HNBR): experimental results", Int. J. Solids and Struct., 47(20), 2653-2659. https://doi.org/10.1016/j.ijsolstr.2010.05.012
  14. Khan, A.S., Lopez-Pamies, O. and Kazmi, R. (2006), "Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures", Int. J. Plast., 22(4), 581-601. https://doi.org/10.1016/j.ijplas.2005.08.001
  15. Lai, J. and Bakker, A. (1996), "3-D Schapery representation for non-linear viscoelasticity and finite element implementation", Comput. Mech., 18(3), 182-191. https://doi.org/10.1007/BF00369936
  16. Mahmoud, F.F., El-Shafei, A.G. and Attia, M.A. (2011), "Analysis of thermoviscoelastic frictionless contact of layered bodies", Finite Elem. Anal. Des., 47(3), 307-318. https://doi.org/10.1016/j.finel.2010.10.004
  17. Muliana, A.H. (2008), "Multi-scale framework for the thermo-viscoelastic analyses of polymer composites", Mech. Res. Commun., 35(1), 89-95. https://doi.org/10.1016/j.mechrescom.2007.08.007
  18. Payette, G. and Reddy, J. (2010), "Nonlinear quasi-static finite element formulations for viscoelastic Euler? Bernoulli and Timoshenko beams", Int. J. Numer. Meth. Biomed. Eng., 26(12), 1736-1755.
  19. Peretz, D. and Weitsman, Y. (1983), "The nonlinear thermoviscoelastic characterizations of FM-73 adhesives", J. Rheol., 27, 97-114. https://doi.org/10.1122/1.549700
  20. Reese, S. and Govindjee, S. (1997), "Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like polymers", Mech. of Time-Depend. Mater., 1(4), 357-396. https://doi.org/10.1023/A:1009795431265
  21. Reese, S. and Wriggers, P. (1998), "Thermoviscoelastic material behaviour at finite deformations with temperature-dependent material parameters", ZAMM Appl. Math. Mech., 78, S157.
  22. Rogers, T.G. and Lee, E.H. (1992) "On the Finite Deflection of a Viscoelastic Cantilever", Proceedings of 4th U.S. Nat1 Cong. of Appl. Mech., ASME, 977-987.
  23. Roy, S. and Reddy, J. (1988), "Finite-element models of viscoelasticity and diffusion in adhesively bonded joints", Int. J. Numer. Meth. Eng., 26(11), 2531-2546. https://doi.org/10.1002/nme.1620261111
  24. Schapery, R.A. (1969), "On the characterization of nonlinear viscoelastic materials", Polym. Eng. Sci., 9(4),295-310. https://doi.org/10.1002/pen.760090410
  25. Schapery, R.A. (1997), "Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics", Mech. Time-Depend. Mater., 1(2), 209-240. https://doi.org/10.1023/A:1009767812821
  26. Taylor, R.L., Pister, K.S. and Goudreau, G.L. (1970), "Thermomechanical analysis of viscoelastic solids", Int. J. Numer. Method. Eng., 2(1), 45-59. https://doi.org/10.1002/nme.1620020106
  27. Touati, D. and Cederbaum, G. (1998a), "Postbuckling of non-linear viscoelastic imperfect laminated plates. Part II: structural analysis", Compos. Struct., 42 (1), 43-51. https://doi.org/10.1016/S0263-8223(98)00060-9
  28. Touati, D. and Cederbaum, G. (1998b), "Stress relaxation of nonlinear thermoviscoelastic materials predicted from known creep", Mech. Time-Depend. Mater., 1(3), 321-330.
  29. Vaz, M.A. and Caire, M. (2010), "On the large deflections of linear viscoelastic beams", Int. J. Non Linear Mech., 45, 75-81. https://doi.org/10.1016/j.ijnonlinmec.2009.09.004

Cited by

  1. Response of frictional contact problems in thermo-rheologically complex structures vol.49, pp.12, 2014, https://doi.org/10.1007/s11012-014-0035-6