References
- Beck, J.L. (2010), "Bayesian system identification based on probability logic", Struct. Control Hlth., 17(7), 825-847. https://doi.org/10.1002/stc.424
- Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties, I: Bayesian statistical framework", J. Eng. Mech.-ASCE, 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
- Beck, J.L. and Yuen, K.V. (2004), "Model selection using response measurements: Bayesian probabilistic approach", J. Eng. Mech.-ASCE, 130(2), 192-203. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(192)
- Box, G.E.P. and Tiao, G.C. (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA.
- Ching, J., Beck, J.L. and Porter, K.A. (2006), "Bayesian state and parameter estimation of uncertain dynamical systems", Probabilist. Eng. Mech., 21(1), 81-96. https://doi.org/10.1016/j.probengmech.2005.08.003
- Ching, J., Porter, K.A. and Beck, J.L. (2009), "Propagating uncertainties for loss estimation in performancebased earthquake engineering using moment matching", Struct. Infrastruct. E., 5(3), 245-262. https://doi.org/10.1080/15732470701298323
- Chui, C.K. and Chen, G. (2009), Kalman Filtering with Real-Time Applications, 4th Edition, Springer-Verlag, New York.
- Grewal, M.S. and Andrews, A.P. (1993), Kalman Filtering: Theory and Practice, Prentice Hall, Englewood Cliffs, New Jersey.
- Hoi, K.I., Yuen, K.V. and Mok, K.M. (2008), "Kalman filter based prediction system for wintertime PM10 concentrations in Macau", Global NEST J., 10(2), 140-150.
- Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems", J. Basic Eng.-T. ASME, 82(1), 35-45. https://doi.org/10.1115/1.3662552
- Koh, C.G. and See, L.M. (1994), "Identification and uncertainty estimation of structural parameters", J. Eng. Mech.-ASCE, 120(6), 1219-1236. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:6(1219)
- Kuok, S.C. and Yuen, K.V. (2012), "Structural health monitoring of Canton tower using Bayesian framework", Smart Struct. Syst., 10(4-5), 375-391. https://doi.org/10.12989/sss.2012.10.4_5.375
- Lam, H.F., Yuen, K.V. and Beck, J.L. (2006), "Structural health monitoring via measured Ritz vectors utilizing artificial neural networks", Comput. Aided Civ. Inf., 21(4), 232-241. https://doi.org/10.1111/j.1467-8667.2006.00431.x
- Lee, M.H. and Chen, T.C. (2010), "Intelligent fuzzy weighted input estimation method for the input force on the plate structure", Struct. Eng. Mech., 34(1), 1-14. https://doi.org/10.12989/sem.2010.34.1.001
- Lei, Y. and Jiang, Y.Q. (2011), "A two-stage Kalman estimation approach for the identification of structural parameters under unknown inputs", Adv. Mat. Res., 243-249, 5394-5398. https://doi.org/10.4028/www.scientific.net/AMR.243-249.5394
- Lin, J.W., Chen, C.W. and Hsu, T.C. (2013), "A novel regression prediction model for structural engineering applications", Struct. Eng. Mech., 45(5), 693-702. https://doi.org/10.12989/sem.2013.45.5.693
- Mehra, R.K. (1970), "On the identification of variance and adaptive Kalman filtering", IEEE T. Automat. Contr., 15(2), 175-184. https://doi.org/10.1109/TAC.1970.1099422
- Mohamed, A.H. and Schwarz, K.P. (1999), "Adaptive Kalman filtering for INS/GPS", J. Geodesy, 73, 193-203. https://doi.org/10.1007/s001900050236
- Ni, Y.Q., Ko, J.M., Hua, X.G. and Zhou, H.F. (2007), "Variability of measured modal frequencies of a cablestayed bridge under different wind conditions", Smart Struct. Syst., 3(3), 341-356. https://doi.org/10.12989/sss.2007.3.3.341
- Odelson, B.J., Rajamani, M.R. and Rawlings, J.B. (2006), "A new autocovariance least-squares method for estimating noise covariances", Automatica, 42(2), 303-308. https://doi.org/10.1016/j.automatica.2005.09.006
- Papadimitriou, C., Beck, J.L. and Au, S.K. (2000), "Entropy-based optimal sensor location for structural model updating", J. Vib. Control, 6(5), 781-800. https://doi.org/10.1177/107754630000600508
- Papadimitriou, C., Fritzen, C.P., Kraemer, P. and Ntotsios, E. (2011), "Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering", Struct. Control Hlth., 18(5), 554-573. https://doi.org/10.1002/stc.395
- Rosa, L., Tomasini, G., Zasso, A. and Aly, A.M. (2012), "Wind-induced dynamics and loads in a prismatic slender building: modal approach based on unsteady pressure measures", J. Wind Eng. Ind. Aerod., 107-108, 118-130. https://doi.org/10.1016/j.jweia.2012.03.034
- Sangsuk-Iam, S. and Bullock, T.E. (1990), "Analysis of discrete time Kalman filtering under incorrect noise covariances", IEEE T. Automat. Contr., 35(12), 1304-1309. https://doi.org/10.1109/9.61006
- Schmidt, S.F. (1981), "The Kalman filter: Its recognition and development for aerospace applications", J. Guid. Control Dynam., 4(1), 4-7. https://doi.org/10.2514/3.19713
- Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, Fundamentals and Applications to Design, 3rd Edition, John Wiley & Sons.
- Sorensen, S.W. and Sacks, J.E. (1971), "Recursive fading memory filters", Inform. Sciences, 3(2), 101-119. https://doi.org/10.1016/S0020-0255(71)80001-4
- Taranath, B.S. (2005), Wind and Earthquake Resistant Buildings: Structural Analysis and Design, New York, Marcel Dekker.
- Yan, W.M., Yuen, K.V. and Yoon, G.L. (2009), "Bayesian probabilistic approach for correlations of compressibility index for marine clays", J. Geotech. Geoenviron., 135(12), 1932-1940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000157
- Yang, J.N., Lei, Y., Lin, S. and Huang, N. (2004), "Identification of natural frequencies and dampings of in situ tall buildings using ambient wind vibration data", J. Eng. Mech.-ASCE, 130(5), 570-577. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:5(570)
- Yuen, K.V. (2010), Bayesian Methods for Structural Dynamics and Civil Engineering, John Wiley and Sons, New York.
- Yuen, K.V., Hoi, K.I. and Mok, K.M. (2007), "Selection of noise parameters for Kalman filter", Earthq. Eng. Eng. Vib., 6(1), 49-56. https://doi.org/10.1007/s11803-007-0659-9
- Yuen, K.V. and Katafygiotis, L.S. (2001), "Bayesian time-domain approach for modal updating using ambient data", Probabilist. Eng. Mech., 16(3), 219-231. https://doi.org/10.1016/S0266-8920(01)00004-2
- Yuen, K.V. and Katafygiotis, L.S. (2005a), "An efficient simulation method for reliability analysis using simple additive rules of probability", Probabilist. Eng. Mech., 20(1), 109-114. https://doi.org/10.1016/j.probengmech.2004.07.003
- Yuen, K.V. and Katafygiotis, L.S. (2005b), "Model updating using noisy response measurements without knowledge of the input spectrum", Earthq. Eng. Struct. Dyn., 34(2), 167-187. https://doi.org/10.1002/eqe.415
- Yuen, K.V. and Kuok, S.C. (2010), "Ambient interference in long-term monitoring of buildings", Eng. Struct., 32(8), 2379-2386. https://doi.org/10.1016/j.engstruct.2010.04.012
- Yuen, K.V. and Kuok, S.C. (2011), "Bayesian methods for updating dynamic models", Appl. Mech. Rev., 64(1), 010802-1-010802-18. https://doi.org/10.1115/1.4004479
- Yuen, K.V. and Mu, H.Q. (2012), "A novel probabilistic method for robust parametric identification and outlier detection", Probabilist. Eng. Mech., 30, 48-59. https://doi.org/10.1016/j.probengmech.2012.06.002
- Yun, C.B., Abdelrahman, A.M. and Wang, P.C. (1979), "Along-wind gust effect on elevated structures", Eng. Struct., 1(3), 121-124. https://doi.org/10.1016/0141-0296(79)90021-X
Cited by
- A Computationally Efficient Algorithm for Real-Time Tracking the Abrupt Stiffness Degradations of Structural Elements vol.31, pp.6, 2016, https://doi.org/10.1111/mice.12217
- Structural Health Monitoring of a Reinforced Concrete Building during the Severe Typhoon Vicente in 2012 vol.2013, 2013, https://doi.org/10.1155/2013/509350
- Progressive damage identification using dual extended Kalman filter vol.227, pp.8, 2016, https://doi.org/10.1007/s00707-016-1590-9
- Study of the attenuation relationship for the Wenchuan M s 8.0 earthquake vol.14, pp.1, 2015, https://doi.org/10.1007/s11803-015-0002-9
- Impact load identification for composite structures using Bayesian regularization and unscented Kalman filter vol.24, pp.5, 2017, https://doi.org/10.1002/stc.1910
- Real-Time System Identification: An Algorithm for Simultaneous Model Class Selection and Parametric Identification vol.30, pp.10, 2015, https://doi.org/10.1111/mice.12146
- Modal decomposition using multi-channel response measurements vol.37, 2014, https://doi.org/10.1016/j.probengmech.2014.06.003
- Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering vol.16, pp.12, 2015, https://doi.org/10.3390/s16010002
- Probabilistic real-time updating for geotechnical properties evaluation vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.363
- Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters vol.89, pp.2, 2017, https://doi.org/10.1007/s11071-017-3530-1
- Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.291
- Stable Robust Extended Kalman Filter vol.30, pp.2, 2017, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000665
- Multiresolution Bayesian nonparametric general regression for structural model updating vol.25, pp.2, 2018, https://doi.org/10.1002/stc.2077
- Remaining Useful Life Prediction and Uncertainty Quantification of Proton Exchange Membrane Fuel Cell Under Variable Load vol.63, pp.4, 2016, https://doi.org/10.1109/TIE.2016.2519328
- Predicting ground-level ozone concentrations by adaptive Bayesian model averaging of statistical seasonal models 2017, https://doi.org/10.1007/s00477-017-1473-1
- A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.057
- Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework vol.17, pp.3, 2016, https://doi.org/10.12989/sss.2016.17.3.445
- Data fusion based improved Kalman filter with unknown inputs and without collocated acceleration measurements vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.375
- Novel nonparametric modeling of seismic attenuation and directivity relationship vol.311, 2016, https://doi.org/10.1016/j.cma.2016.09.004
- Online damage detection in structural systems via dynamic inverse analysis: A recursive Bayesian approach vol.159, 2018, https://doi.org/10.1016/j.engstruct.2017.12.031
- A dual Kalman filter approach for state estimation via output-only acceleration measurements vol.60-61, 2015, https://doi.org/10.1016/j.ymssp.2015.02.001
- Real-time substructural identification by boundary force modeling vol.25, pp.5, 2018, https://doi.org/10.1002/stc.2151
- Chaotic particle swarm optimization in optimal active control of shear buildings vol.61, pp.3, 2017, https://doi.org/10.12989/sem.2017.61.3.347
- Self‐calibrating Bayesian real‐time system identification vol.34, pp.9, 2013, https://doi.org/10.1111/mice.12441
- Ultimately Bounded Filtering for Time-Delayed Nonlinear Stochastic Systems with Uniform Quantizations under Random Access Protocol vol.20, pp.15, 2020, https://doi.org/10.3390/s20154134
- A general synthesis of identification and vibration control of building structures under unknown excitations vol.143, pp.None, 2013, https://doi.org/10.1016/j.ymssp.2020.106803
- Switching Bayesian dynamic linear model for condition assessment of bridge expansion joints using structural health monitoring data vol.160, pp.None, 2013, https://doi.org/10.1016/j.ymssp.2021.107879
- Real-time simultaneous input-state-parameter estimation with modulated colored noise excitation vol.165, pp.None, 2022, https://doi.org/10.1016/j.ymssp.2021.108378