References
- American Association of State Highway and Transportation Officials (AASHTO) (2002), Standard Specifications for Highway Bridges, 17th Edition, Washangton, D.C.
- American Concrete Institute, committee 318 (ACI 318-08) (2008), Building Code Requirements for Structural Concrete and Commentary, Farmington Hills.
- Ceranic, B., Fryer, C. and Baines, R.W. (2001), "An application of simulated annealing to the optimum design of reinforced concrete retaining structures", Comput. Struct., 79(17), 1569-1581. https://doi.org/10.1016/S0045-7949(01)00037-2
- Coello, C.A.C., Pulido, G.T. and Lechuga, M.S. (2004). "Handling multiple objectives with particle swarm optimization", IEEE Trans. Evol. Comput., 8(3), 256-279. https://doi.org/10.1109/TEVC.2004.826067
- Das, B.M. (2010), Principles of Foundation Engineering, 7th Edition, Cengage Learning, USA.
- Das, B.M. and Ramana, G.V. (2010), Principles of Soil Dynamics, 2nd Edition, Cengage Learning, USA.
- Deb, K., Pratap, A., Agarwal, S., Agarwal, S. and Meyarivan, T. (2002). "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE. Trans. Evolut. Comput., 6(2),182-197. https://doi.org/10.1109/4235.996017
- Deb, K. (2009), Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, USA.
- Giri, D. (2011), "Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface", Geomech. Eng., 3(4), 255-266. https://doi.org/10.12989/gae.2011.3.4.255
- Kaveh, A. (2006), Optimal Structural Analysis, 2nd Edition, John Wiley & Sons, UK. 244
- Kaveh, A. and Shakouri-Mahmud-Abadi, A. (2010), "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls", Int. J. Civil Eng., 9(1), 1-8.
- Kaveh, A., Laknejadi, K. and Alinejad, B. (2011), "Performance-based multi-objective optimization of large steel structures", Acta Mech., 223(2), 355-369.
- Kaveh, A. and Behnam, A.F. (2012), "Charged system search algorithm for the optimum cost design of reinforced concrete cantilever retaining walls", Arab. J. Sci. Eng., 37(7), 1-8. https://doi.org/10.1007/s13369-011-0161-6
- Khajehzadeh, M., Taha, M.R. and Eslami, M. (2013), "Efficient gravitational search algorithm for optimum design of retaining walls", Struct. Eng. Mech., 45(1), 111-127. https://doi.org/10.12989/sem.2013.45.1.111
- Martinez-Martin, F.J., Gonzalez-Vidosa, F., Hospitaler, A., Yepes, V. (2012). "Multi-objective optimization design of bridge piers with hybrid heuristic algorithms", J. Zhejiang Univ. Sci. A (Appl. Phys. & Eng.), 13(6), 420-432. https://doi.org/10.1631/jzus.A1100304
- MATLAB (2012), The Language of Technical Computing, Math Works Inc.
- Mononobe, N. (1929), "Earthquake-proof construction of masonry dams," Proceedings of World Engineering Conference, 9, 274-280.
- Okabe, S. (1926), "General theory of earth pressure", J. Jpn. Soc. Civ. Engrs., 12(1).
- Saribas, A. and Erbatur, F. (1996). "Optimization and sensitivity of retaining structures" J. Geotech. Eng. Div., 122(8), 649-656. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(649)
- Talbi, E.G. (2009), Metaheuristics: From Design to Implementation, Wiley, New Jersey.
- Yepes, V., Alcala, J., Perea, C. and Gonzalez-Vidosa, F. (2008), "A parametric study of optimum earth-retaining walls by simulated annealing", Eng. Struct., 30(3), 821-830. https://doi.org/10.1016/j.engstruct.2007.05.023
-
Yepes, V., Gonzalez-Vidosa, F., Alcala, J. and Villalba, P. (2012), "
$CO_{2}$ -optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy", J. Comput. Civ. Eng., 26(3), 378-386. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000140
Cited by
- Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights vol.49, pp.3, 2017, https://doi.org/10.1080/0305215X.2016.1191837
- Optimal design of Reinforced Concrete Cantilever Retaining Walls considering the requirement of slope stability vol.21, pp.7, 2017, https://doi.org/10.1007/s12205-017-1627-1
- Efficient non-linear analysis and optimal design of biomechanical systems vol.2, pp.4, 2015, https://doi.org/10.12989/bme.2015.2.4.207
- Constructability: Outline of Past, Present, and Future Research vol.143, pp.8, 2017, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001331
- Automating pseudo-static analysis of concrete cantilever retaining wall using evolutionary algorithms vol.115, 2018, https://doi.org/10.1016/j.measurement.2017.10.032
- Teaching learning-based optimization for design of cantilever retaining walls vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.763
- Multi-objective topology and geometry optimization of statically determinate beams vol.70, pp.3, 2013, https://doi.org/10.12989/sem.2019.70.3.367
- Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall vol.20, pp.6, 2013, https://doi.org/10.12989/gae.2020.20.6.527
- CO2 and Cost Optimization of Reinforced Concrete Cantilever Soldier Piles: A Parametric Study with Harmony Search Algorithm vol.12, pp.15, 2020, https://doi.org/10.3390/su12155906
- The Usage of the Harmony Search Algorithm for the Optimal Design Problem of Reinforced Concrete Retaining Walls vol.11, pp.3, 2013, https://doi.org/10.3390/app11031343
- Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm vol.24, pp.3, 2013, https://doi.org/10.12989/gae.2021.24.3.237
- A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization vol.77, pp.3, 2013, https://doi.org/10.12989/sem.2021.77.3.417
- Adaptive-Hybrid Harmony Search Algorithm for Multi-Constrained Optimum Eco-Design of Reinforced Concrete Retaining Walls vol.13, pp.4, 2013, https://doi.org/10.3390/su13041639
- An Artificial Intelligence-Based Prediction Model for Optimum Design Variables of Reinforced Concrete Retaining Walls vol.21, pp.12, 2021, https://doi.org/10.1061/(asce)gm.1943-5622.0002234