References
- Aguirre, N., Ikhouane, F., Rodellar, J., Wagg, D.J. and Neild, S.A. (2010), "Viscous and Dahl model for MR dampers characterization: A Real time hybrid test (RTHT) validation", Proceedings of the 14th European Conference on Earthquake Engineering, August - September, Ohrid, Republic of Macedonia.
- Boston, C., Weber, F. and Guzzella, L. (2010), "Modeling of a disk-type magnetorheological damper", Smart Mater. Struct., 19(4), 045005. https://doi.org/10.1088/0964-1726/19/4/045005
- Chang, C. and Roschke, P. (1998), "Neural network modeling of a magnetorheological damper", Journal of Intelligent Material Systems and Structures, 9(9), 755-764. https://doi.org/10.1177/1045389X9800900908
- Chang, C. and Zhou, L. (2002), "Neural network emulation of inverse dynamics for a magnetorheological damper", Journal of Structural Engineering, 128(2), 231-239. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:2(231)
- Christenson, R.E., Spencer, Jr. B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", Journal of Engineering Mechanics, 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)
- Dominguez, A., Sedaghati, R. and Stiharu, I. (2004), "Modelling the hysteresis phenomenon of magnetorheological dampers", Smart Mater. Struct., 13(6), 1351-1361. https://doi.org/10.1088/0964-1726/13/6/008
- Dominguez, A., Sedaghati, R. and Stiharu, I. (2006), "A new dynamic hysteresis model for magnetorheological dampers", Smart Mater. Struct., 15(5), 1179-1189. https://doi.org/10.1088/0964-1726/15/5/004
- Ikhouane, F. and Dyke, S. (2007), "Modeling and identification of a shear mode magnetorheological damper", Smart Mater. Struct., 16(3), 605-616. https://doi.org/10.1088/0964-1726/16/3/007
- Jimenez, R. and Alvarez-Icaza, L. (2005), "LuGre friction model for a magnetorheological damper", Journal of Structural Control and Health Monitoring, 12(1), 91-116. https://doi.org/10.1002/stc.58
- Lee, H., Jung, H., Cho, S. and Lee, I. (2008), "An experimental study of semiactive modal neuro-control scheme using MR damper for building structure", Journal of Intelligent material Systems and Structures, 19(9), 1005-1015. https://doi.org/10.1177/1045389X07083024
- Li, H., Liu, M., Li, J., Guan, X. and Ou, J. (2007), "Vibration control of stay cables of the Shandong Binzhou yellow river highway bridge using magnetorheological fluid dampers", Journal of Bridge Engineering, 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401)
- Maslanka, M., Sapinski, B. and Snamina, J. (2007), "Experimental study of vibration control of a cable with an attached MR damper", Journal of Theoretical and Applied Mechanics, 45(4), 893-917.
- Metered, H., Bonello, P. and Oyadiji, S.O. (2009), "The experimental identification of magnetorheological dampers and evaluation of their controllers", Journal of Mechanical Systems and Signal Processing, 24(4), 976-994.
- Neelakantan, V.A. and Washington, G.N. (2008), "Vibration control of structural systems using MR dampers and a 'modified' sliding mode control technique", Journal of Intelligent Material Systems and Structures, 19(2), 211-224. https://doi.org/10.1177/1045389X06074509
- Sahin, I., Engin, T. and Cesmeci, S. (2010), "Comparison of some existing parametric models for magnetorheological fluid dampers", Smart Mater. Struct., 19(3), 035012.
- Shulman, Z.P., Korobko, E.V., Levin, M.L. et al. (2006), "Energy dissipation in electrorheological damping devices", Journal of Intelligent Material Systems and Structures, 17(4), 315-320. https://doi.org/10.1177/1045389X06054580
- Sims, N.D., Holmes, N.J. and Stanway, R. (2004), "A unified modelling and model updating procedure for electrorheological and magnetorheological vibration dampers", Smart Mater. Struct., 13(1), 100-121. https://doi.org/10.1088/0964-1726/13/1/012
- Soeiro, F.J., Stutz, L.T., Tenenbaum, R.A. and Neto, A.J. (2008), "Stochastic and hybrid methods for the identification in the Bouc-Wen model for magneto-rheological dampers", Journal of Physics: conference series, 135, 012093. https://doi.org/10.1088/1742-6596/135/1/012093
- Spencer, Jr. B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", Journal of Structural Engineering, 129(8), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Tse, T. and Chang, C. (2004), "Shear-mode rotary magnetorheological damper for small-scale structural control experiments", Journal of Structural Engineering, 130(6), 904-910. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(904)
- Tsoukalas, L. and Uhrig, R. (1997), Fuzzy and Neural Approaches in Engineering, John Wiley & Sons Inc.
- Wang, D.H. and Liao, W.H. (2005), "Modeling and control of magnetorheological fluid dampers using neural networks", Smart Mater. Struct., 14(1), 111-126. https://doi.org/10.1088/0964-1726/14/1/011
- Weber, F., Feltrin, G. and Motavalli, M. (2005), "Passive damping of cables with MR dampers", Journal of Materials and Structures, 38(279), 568-577. https://doi.org/10.1617/14313
- Weber, F., Feltrin, F. and Distl, H. (2008), "Detailed analysis and modeling of MR dampers at zero current", Structural Engineering Mechanics, 30(6), 787-790. https://doi.org/10.12989/sem.2008.30.6.787
- Weber, F., Distl, H., Feltrin, G. and Motavalli, M. (2009), "Cycle energy control of MR dampers on cables" Smart Mater. Struct., 18(1), 015005. https://doi.org/10.1088/0964-1726/18/1/015005
- Weber, F. and Boston, C. (2011a), "Measured tracking of negative stiffness with MR damper", Proceedings of the 5th ECCOMAS Thematic Conference on Smart Structures and Materials, July, Saarbrucken, Germany.
- Weber, F. and Boston, C. (2011b), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart Mater. Struct., 20(4), 045007. https://doi.org/10.1088/0964-1726/20/4/045007
- Weber, F., Boston, C. and Maslanka, M. (2011c), "An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper", Smart Mater. Struct., 20(1), 015012. https://doi.org/10.1088/0964-1726/20/1/015012
- Weber, F. and Maslanka, M. (2012), "Frequency and damping adaptation of a TMD with controlled MR damper", Smart Mater. Struct., 21(5), 055011. https://doi.org/10.1088/0964-1726/21/5/055011
- Weber, F. (2013a), "Bouc-Wen model-based real-time force tracking scheme for MR dampers", Smart Mater. Struct., 22(4), 045012. https://doi.org/10.1088/0964-1726/22/4/045012
- Weber, F., Bhowmik, S. and Hogsberg, J. (2013b), "Extended Neural Network Based Scheme for Real-Time Force Tracking with MR Dampers", Structural Control and Health Monitoring, doi: 10.1002/stc.1569.
- Won, J.-S. and Sunwoo, M. (2009), "Fuzzy modelling approach to magnetorheological dampers: forward and inverse model", Proc. of the Inst. of Mech. Eng. Part I - Journal of Systems and Control Engineering, 223(I8) 1055-1066.
- Wu, W.J. and Cai, C.S. (2010), "Cable vibration control with a semiactive MR damper - numerical simulation and experimental verification", Structural Engineering and Mechanics, 34(5), 611-623. https://doi.org/10.12989/sem.2010.34.5.611
- Xia, P. (2003), "An inverse model of MR damper using optimal neural network and system identification", Journal of Sound and Vibration, 266(5), 1009-1023. https://doi.org/10.1016/S0022-460X(02)01408-6
- Xiaomin, X., Qing, S., Ling, Z. and Bin, Z. (2009), "Parameter estimation and its sensitivity analysis of the MR damper hysteresis model using a modified genetic algorithm", Journal of Intelligent Material Systemsand Structures, 20(17), 2089-2100. https://doi.org/10.1177/1045389X09343789
- Yang, G., Spencer, Jr. B.F., Jung, H.J. and Carlson, J.D. (2004), "Dynamic modeling of large-scale magneto-rheological damper systems for civil engineering applications", Journal of Engineering Mechanics, 130(9), 1107-1114. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:9(1107)
- Yang, F., Sedaghati, R. and Esmailzadeh, E. (2009), "Development of LuGre friction model for large-scale magneto-rheological fluid damper", Journal of Intelligent Material Systems and Structures, 20(8) 923-937. https://doi.org/10.1177/1045389X08099660
- Ye, M. and Wang, X. (2007), "Parameter estimation of the Bouc-Wen hysteresis model using particle swarmoptimization", Smart Mater. Struct., 16(6), 2341-2349. https://doi.org/10.1088/0964-1726/16/6/038
Cited by
- Testing and parametric modeling of magnetorheological valve with meandering flow path vol.85, pp.1, 2016, https://doi.org/10.1007/s11071-016-2684-6
- A new fuzzy sliding mode controller for vibration control systems using integrated-structure smart dampers vol.26, pp.4, 2017, https://doi.org/10.1088/1361-665X/aa52fd
- Wire rope isolators for vibration isolation of equipment and structures – A review vol.78, 2015, https://doi.org/10.1088/1757-899X/78/1/012001
- Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy vol.29, pp.4, 2017, https://doi.org/10.1016/j.jksus.2017.08.012
- Optimal inverse magnetorheological damper modeling using shuffled frog-leaping algorithm–based adaptive neuro-fuzzy inference system approach vol.8, pp.8, 2016, https://doi.org/10.1177/1687814016662770
- Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network vol.22, pp.11, 2013, https://doi.org/10.1088/0964-1726/22/11/115030
- Adaptive neural network control for semi-active vehicle suspensions vol.19, pp.4, 2017, https://doi.org/10.21595/jve.2017.18045
- Simulation study of magnetorheological testing cell design by incorporating all basic operating modes vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.901
- A unified MR damper model and its inverse characteristics investigation based on the neuro-fuzzy technique vol.61, pp.2, 2013, https://doi.org/10.3233/jae-180114
- Active Shock Absorber Control Based on Time-Delay Neural Network vol.13, pp.5, 2013, https://doi.org/10.3390/en13051091
- Vehicle attitude compensation control of magneto-rheological semi-active suspension based on state observer vol.235, pp.14, 2013, https://doi.org/10.1177/09544070211020897