DOI QR코드

DOI QR Code

A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures

  • Received : 2012.02.12
  • Accepted : 2013.04.14
  • Published : 2013.05.10

Abstract

This paper describes new optimization strategy that offers significant improvements in performance over existing methods for geometry design of frame structures. In this study, an imperialist competitive algorithm (ICA) and ant colony optimization (ACO) are combined to reach to an efficient algorithm, called Imperialist Competitive Ant Colony Optimization (ICACO). The ICACO applies the ICA for global optimization and the ACO for local search. The results of optimal geometry for three benchmark examples of frame structures, demonstrate the effectiveness and robustness of the new method presented in this work. The results indicate that the new technique has a powerful search strategies due to the modifications made in search module of ICACO. Higher rate of convergence is the superiority of the presented algorithm in comparison with the conventional mathematical methods and non hybrid heuristic methods such as ICA and particle swarm optimization (PSO).

Keywords

References

  1. Atashpaz-Gargari, E., Hashemzadeh, F., Rajabioun, R. and Lucas, C. (2008), "Colonial competitive algorithm: a novel approach for PID controller design in MIMO distillation column process", Int. J. Intell. Comput. Cybernet., 1(3), 337-55. https://doi.org/10.1108/17563780810893446
  2. Atashpaz-Gargari, E. and Lucas, C. (2007), "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", EEE Congress on Evolutionary Computation, Singapore, September.
  3. Bendsoe, M.P. (1995), Optimization of Structural Topology, Shape and Material, Springer, Berlin, Heidelberg, New York.
  4. Choi, K.K. and Kim, N.H. (2004), Structural Sensitivity Analysis and Optimization 1 and 2, Springer, Berlin, Heidelberg, New York.
  5. Clerc, M. and Kennedy, J. (2002), "The particle swarm-explosion, stability, and convergence in a multidimensional complex space", IEEE Trans. on Evol. Comput., 6(1), 58-73. https://doi.org/10.1109/4235.985692
  6. Dorigo, M. (1992), "Optimization, learning and natural algorithms", Ph.D. Dissertation, Dipartimento di Elettronica, Politecnico di Milano, IT. (in Italian)
  7. Eskandar, H., Salehi, P. and Sabour, M.H. (2011), "Imperialist competitive ant colony algorithm for truss structures", World Appl. Sci. J., 12 (1), 94-105.
  8. Eskandar, H., Sadollah, A., Bahreininejad, A. and Hamdi M. (2012), "Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems", Comput. Struct., 110, 151-166.
  9. Ferhat, E., Erkan, D. and Saka, M.P. (2011), "Optimum design of cellular beams using harmony search and particle swarm optimizers", J. Constr. Steel Res., 67, 237-247. https://doi.org/10.1016/j.jcsr.2010.07.014
  10. Ghoddosian, A. and Sheikhi, M. (2011), "Using particle swarm optimization for minimization of moment peak in structure", Aust. J. Basic Appl. Sci., 5(8), 1428-1434.
  11. Guan, C.L. and Chun, Y.L. (2011), "Optimal design of truss-structures using particle swarm optimization", Comput. Struct., 89, 2221-2232. https://doi.org/10.1016/j.compstruc.2011.08.013
  12. Hasancebi, O. and Erbatur, F. (2002), "Layout optimization of trusses using simulated annealing", Adv. Eng. Softw., 33, 681-96. https://doi.org/10.1016/S0965-9978(02)00049-2
  13. Isenberg, Pereyra, V. and Lawver, D. (2002), "Optimal design of steel frame structures", J. Appl. Numer. Math., 40, 59-71. https://doi.org/10.1016/S0168-9274(01)00058-7
  14. Kaveh, A. and Talatahari, S. (2009), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87, 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
  15. Kaveh, A. and Talatahari, S. (2010), "Geometry and topology optimization of geodesic domes using charged system search", Struct. Multidisc. Optim., 43, 215-29.
  16. Kaveh, A. and Talatahari, S. (2010), "Optimum design of skeletal structures using imperialist competitive algorithm", Comput. Struct., 88, 1220-1229. https://doi.org/10.1016/j.compstruc.2010.06.011
  17. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
  18. Luh, G.C. and Lin, C.Y. (2008), "Optimal design of truss structures using ant colony algorithm", Struct. Multidisc. Optim., 36, 365-79. https://doi.org/10.1007/s00158-007-0175-6
  19. Pedersen, P. (2000), "On optimal shapes in materials and structures", Struct. Multidisc. Optim., 19,169-82. https://doi.org/10.1007/s001580050100
  20. Rahami, H., Kaveh, A. and Gholipour, Y. (2008), "Sizing geometry and topology optimization of trusses via force method and genetic algorithm", Eng. Struct., 30, 2360-2369. https://doi.org/10.1016/j.engstruct.2008.01.012
  21. Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi M. (2012), "Mine blast algorithm for optimization of truss structures with discrete variables", Comput. Struct., 102, 49-63.
  22. Sheikhi, M., Ghoddosian, A. and Sheikhi, M. (2012), "Optimal design of structural support positions using imperialist competitive algorithm and modified finite element", Modares J. Mech. Eng., 12(3), 50-59.
  23. Sokolowski, J. and Zolesio, J.P. (1992), Introduction to Shape Optimization-Shape Sensitivity Analysis, Springer-Verlag, Berlin, Heidelberg, New York.
  24. Tang, W., Tong, L. and Gu, Y. (2005), "Improved genetic algorithm for design optimization of truss structures with size, shape and topology variables", Int. J. Numer. Methods. Eng., 62, 1737-62. https://doi.org/10.1002/nme.1244
  25. Van Keulen, F., Haftka, R.T. and Kim, N.H. (2005), "Review of options for structural design sensitivity analysis. Part 1: Linear systems", Comput. Methods. Appl. Mech. Eng., 194, 3213-43. https://doi.org/10.1016/j.cma.2005.02.002
  26. Wang, D. (2007), "Optimal shape design of a frame structure for minimization of maximum bending moment", Eng. Struct., 29, 1824-1832. https://doi.org/10.1016/j.engstruct.2006.10.004
  27. Wang, D., Zhang, W.H. and Jiang, J.S. (2002), "Truss shape optimization with multiple displacement constraints", Comput. Methods. Appl. Mech. Eng., 191, 3597-612. https://doi.org/10.1016/S0045-7825(02)00297-9

Cited by

  1. Robust optimization of reinforced concrete folded plate and shell roof structure incorporating parameter uncertainty vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.707
  2. Truss optimization with dynamic constraints using UECBO vol.1, pp.2, 2016, https://doi.org/10.12989/acd.2016.1.2.119
  3. Border-search and jump reduction method for size optimization of spatial truss structures pp.2095-2449, 2018, https://doi.org/10.1007/s11709-018-0478-2
  4. An enhanced time evolutionary optimization for solving engineering design problems vol.36, pp.2, 2013, https://doi.org/10.1007/s00366-019-00729-w