DOI QR코드

DOI QR Code

Numerical simulation of flow past a rotating and rotary oscillating circular cylinder on unstructured meshes

  • Bai, Wei (Department of Civil and Environmental Engineering, National University of Singapore)
  • Received : 2013.03.08
  • Accepted : 2013.07.25
  • Published : 2013.06.25

Abstract

The unsteady flow past a circular cylinder which starts rotating or rotary oscillating impulsively from rest in a viscous fluid is investigated for Reynolds numbers Re=200 and 1000, rectilinear speed ratios ${\alpha}$ between 0.5 and 5.0, and forced oscillating frequencies $f_s$ between 0.1 and 2.0. Numerical solutions of the Navier-Stokes equations are obtained by using a finite volume method on an unstructured colocated grid. The objective of the study is to examine the effect of the rotating and rotary oscillating circular cylinder on the flow patterns and dynamics loads. The numerical results reveal that the $K\acute{a}rm\acute{a}n$ vortex street vanishes entirely behind the rotating cylinder when the ratio ${\alpha}$ exceeds the critical value, and the vortex shedding behind the rotary oscillating cylinder undergoes mainly three modes named 'synchronization', 'competition' and 'natural shedding' with the increase of $f_s$. Based on the amplitude spectra analysis of the lift coefficients, the regions of the classification of flow structure modes are presented, which provide important references for the flow control in the ocean engineering.

Keywords

References

  1. Badr, H.M., Coutanceau, M., Dennis, S.C.R. and Menard C. (1990), "Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104", J. Fluid Mech., 220, 459-484. https://doi.org/10.1017/S0022112090003342
  2. Badr, H.M. and Dennis, S.C.R. (1985), "Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder", J. Fluid Mech., 158, 447-488. https://doi.org/10.1017/S0022112085002725
  3. Baek, S.J. and Sung, H.J. (1998), "Numerical simulation of the flow behind a rotary oscillating circular cylinder", Phys. Fluids, 10(4), 869-876. https://doi.org/10.1063/1.869610
  4. Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag on a circular cylinder oscillating in a flow field", Proc. R. Soc. Lond. A, 277, 51-75. https://doi.org/10.1098/rspa.1964.0005
  5. Chen, Y.M., Ou, Y.R. and Pearlstein, A.J. (1993), "Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion", J. Fluid Mech., 253, 449-484. https://doi.org/10.1017/S0022112093001867
  6. Cheng, C.C. and Chern, R.L. (1991), "Vortex shedding from an impulsively started rotating and translating circular cylinder", J. Fluid Mech., 233, 265-298. https://doi.org/10.1017/S0022112091000484
  7. Chew, Y.T., Cheng, M. and Luo, S.C. (1995), "A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme", J. Fluid Mech., 299, 35-71. https://doi.org/10.1017/S0022112095003417
  8. Dol, S.S., Kopp, G.A. and Martinuzzi, R.J. (2008), "The suppression of periodic vortex shedding from a rotating circular cylinder", J. Wind Eng. Ind. Aero, 96(6-7), 1164-1184. https://doi.org/10.1016/j.jweia.2007.06.038
  9. Coutanceau, M. and Menard, C. (1985), "Influence of rotation on the near-wake development behind an impulsively started circular cylinder", J. Fluid Mech., 158, 399-446. https://doi.org/10.1017/S0022112085002713
  10. Diaz, F., Gavalda, J., Kawall, J.G., Keffer, J.F. and Giralt, F. (1983), "Vortex shedding from a spinning cylinder", Phys. Fluids, 26(12), 3454-3460. https://doi.org/10.1063/1.864127
  11. Ferziger, J.H. and Peric, M. (1999), Computational methods for fluid dynamics, Springer, Berlin Heidelberg.
  12. Kang, S., Choi, H. and Lee, S. (1999), "Laminar flow past a rotating circular cylinder", Phys. Fluids, 1 (11), 3312-3321.
  13. Karabelas, S.J. (2010), "Large eddy simulation of high-Reynolds number flow past a rotating cylinder", Int. J. Heat Fluid Flow, 31(4), 518-527. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.010
  14. Koopman, G.H. (1967), "The vortex wakes of vibrating cylinders at low Reynolds numbers", J. Fluid Mech., 28(3), 501-512. https://doi.org/10.1017/S0022112067002253
  15. Koromilas, C.A. and Telionis, D.P. (1980), "Unsteady laminar separation: an experimental study", J. Fluid Mech., 97(2), 347-384. https://doi.org/10.1017/S0022112080002601
  16. Lam, K.M. (2009), "Vortex shedding flow behind a slowly rotating circular cylinder", J. Fluids Struct., 25(2), 245-262. https://doi.org/10.1016/j.jfluidstructs.2008.04.005
  17. Li, P.W. and Tao, W.Q. (1993), "Numerical and experimental investigations on heat/mass transfer of slot-jet impingement in a rectangular cavity", Int. J. Heat Fluid Flow, 14(3), 246-253. https://doi.org/10.1016/0142-727X(93)90055-R
  18. Lu, X.Y. and Zhuang, L.X. (1994), "Numerical study of viscous flow past a rotating circular cylinder in a uniform stream", ACTA Mech. Sinica, 26(2), 233-238 (in Chinese).
  19. Matsui, T. (1982), Flow visualisation studies of vortices, (Ed. Narasimha, R. and Deshpande, S.M.), Survey in Fluid Mechanics, Macmillan.
  20. Mittal, S. (2001), "Control of flow past bluff bodies using rotating control cylinders", J. Fluids Struct., 15(2), 291-326. https://doi.org/10.1006/jfls.2000.0337
  21. Nobari, M.R.H. and Ghazanfarian, J. (2009), "A numerical investigation of fluid flow over a rotating cylinder with cross flow oscillation", Comput. Fluids, 38(10), 2026-2036. https://doi.org/10.1016/j.compfluid.2009.06.008
  22. Okajima, A., Takata, H. and Asanuma, T. (1975), Viscous flow around a rotational oscillating circular cylinder, Report, Inst. Space & Aero. Sci., University of Tokyo.
  23. Prandtl, L. (1925), "The Magnus effect and windpowered ships", Naturwissenschaften, 13, 93-108. https://doi.org/10.1007/BF01585456
  24. Rao, A., Stewart, B.E., Thompson, M.C., Leweke, T. and Hourigan, K., (2011), "Flows past rotating cylinders next to a wall", J. Fluids Struct., 27(5-6), 668-679. https://doi.org/10.1016/j.jfluidstructs.2011.03.019
  25. Swanson, W.M. (1961), "The Magnus effect: a summary of investigation to date", J. Basic Eng., 83(3), 461-470. https://doi.org/10.1115/1.3659004
  26. Taneda, S. (1980), Visualization of unsteady flow separation. (Ed. Merzkirch, W.), Flow Visualization II, Hemisphere.
  27. Tokumaru, P.T. and Dimotakis, P.E. (1991), "Rotary oscillation control of a cylinder wake", J. Fluid Mech., 224, 77-90. https://doi.org/10.1017/S0022112091001659
  28. Tokumaru, P.T. and Dimotakis, P.E. (1993), "The lift of a cylinder executing rotary motions in a uniform flow", J. Fluid Mech., 255, 1-10. https://doi.org/10.1017/S0022112093002368
  29. Yoon, H.S., Chun, H.H., Kim, J.H. and Park, I.L.R. (2009), "Flow characteristics of two rotating side-by-side circular cylinders", Comput. Fluids, 38(2), 466-474. https://doi.org/10.1016/j.compfluid.2008.09.002