DOI QR코드

DOI QR Code

Radial deformation and band-gap modulation of pressurized carbon nanotubes

  • Taira, Hisao (Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University) ;
  • Shima, Hiroyuki (Department of Environmental Sciences & Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi) ;
  • Umeno, Yoshitaka (Institute of Industrial Science, The University of Tokyo) ;
  • Sato, Motohiro (Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University)
  • Received : 2013.05.01
  • Accepted : 2013.07.17
  • Published : 2013.06.25

Abstract

We numerically investigate the electronic band structure of carbon nanotubes (CNTs) under radial corrugation. Hydrostatic pressure application to CNTs leads to a circumferential wave-like deformation of their initially circular cross-sections, called radial corrugations. Tight-binding calculation was performed to determine the band gap energy as a function of the amplitude of the radial corrugation. We found that the band gap increased with increasing radial corrugation amplitude; then, the gap started to decline at a critical amplitude and finally vanished. This non-monotonic gap variation indicated the metal-semiconductor-metal transition of CNTs with increasing corrugation amplitude. Our results provide a better insight into the structure-property relation of CNTs, thus advancing the CNT-based device development.

Keywords

References

  1. Aghaei A. and Dayal K. (2012), "Tension and twist of chiral nanotubes: torsional buckling, mechanical response and indicators of failure", Model. Simul. Mater. Sci. Eng., 20(8), 0850011-08500113.
  2. Ando T (2005), "Theory of electronic states and transport in carbon nanotubes", J. Phys. Soc. Jpn., 74(3), 777-817. https://doi.org/10.1143/JPSJ.74.777
  3. Azevedo S., Rosas A., Machado M., Kaschny J.R. and Chacham H. (2013), "Effects of deformation on the electronic properties of B-C-N nanotubes", J. Sol. Stat. Chem., 197, 254-260. https://doi.org/10.1016/j.jssc.2012.08.008
  4. Barboza A.P.M., Gomes A.P., Archanjo B.S., Araujo P.T., Jorio A. and Ferlauto A.S. (2008), "Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electronic force microscopy", Phys. Rev. Lett., 100(25), 2568041-2568044.
  5. Chen W., Andreev A.V., Tsvelik A.M. and Orgad D. (2008), "Twist Instability in strongly correlated carbon nanotubes", Phys. Rev. Lett., 101(24), 2468021-246804.
  6. Chesnokov S.A., Nalimova V.A., Rinzler A.G., Smalley R.E. and Fischer J.E. (1999), "Mechanical energy storage in carbon nanotube springs", Phys. Rev. Lett., 82(2), 343-346. https://doi.org/10.1103/PhysRevLett.82.343
  7. Choudhary S. and Qureshi S. (2012), "Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting SiC nanotube", Bull. Mater. Sci., 35(5), 713-718. https://doi.org/10.1007/s12034-012-0370-y
  8. Faria B., Silvestre N. and Canongia Lopes J.N. (2012), "Torsion-twisting dependent kinematics of chiral CNTs", Compos. Sci. Tech., 74(24), 211-220.
  9. Faria B., Silvestre N. and Canongia Lopes J.N. (2013), "Induced anisotropy of chiral carbon nanotubes under combined tension-twisting", Mech. Mater., 58, 97-109. https://doi.org/10.1016/j.mechmat.2012.11.004
  10. Farshidianfar A. and Soltani P. (2012), "Nonlinear flow-induced vibration of a SWCNT with a geometrical imperfection", Comp. Mater. Sci., 53(1), 105-116. https://doi.org/10.1016/j.commatsci.2011.08.014
  11. He Z., Ke X., Bais S. and Tendeloo G.V. (2012), "Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections", Carbon, 50(7), 2524-2529. https://doi.org/10.1016/j.carbon.2012.01.075
  12. Huang X., Liang W. and Zhang S. (2011), "Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions", Nanoscale Res. Lett., 6, 531-536. https://doi.org/10.1186/1556-276X-6-531
  13. Ishii H., Kataura H., Shiozawa H. and Yoshioka H. (2003), "Gate-induced crossover from unconventional metals to Fermi liquids in multiwalled carbon nanotubes", Nature, 426(6966), 540-544. https://doi.org/10.1038/nature02074
  14. Kanbara T., Iwasa T., Tsukagoshi K., Aoyagi Y. and Iwasa Y. (2004), "Gate-induced crossover from unconventional metals to Fermi liquids in multiwalled carbon nanotubes", Appl. Phys. Lett., 85(26), 6404-6406. https://doi.org/10.1063/1.1842373
  15. Ke C.-H., Pugno N., Peng B. and Espinosa H.D. (2006), "Experiments and modeling of carbon nanotube-based NEMS", J. Mech. Phys. Sol., 53(6), 1314-1333.
  16. Li C. and Chou T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  17. Lordi V. and Yao N. (1998), "Radial compression and controlled cutting of carbon nanotubes", J. Chem. Phys., 109(6), 2509-2512. https://doi.org/10.1063/1.476822
  18. Lu W., Chou T-W. and Kim B-S. (2011), "Radial deformation and its related energy variations of single-walled carbon nanotubes", Phys. Rev. B, 83(13), 1341131-1341138.
  19. Mehl M.J. and Papaconstantpoulos D.A. (1996), "Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals", Phys. Rev. B, 54(7), 4519-4530. https://doi.org/10.1103/PhysRevB.54.4519
  20. Nishidate K. and Hasegawa M. (2008), "Universal band gap modulation in semiconductor single-walled carbon nanotubes", Phys. Rev. B, 78(19), 1954031-1954036.
  21. Ono S. and Shima H. (2009), "Tuning the electrical resistivity of semiconductor thin films by nanoscale corrugation", Phys. Rev. B, 79(23), 2354071-2354076.
  22. Pantano A., Campanella D., Montinaro N. and Cerniglia D. (2013), "Electronic properties of carbon nanotubes under torsion", Appl. Phys. A, 110(1), 77-85. https://doi.org/10.1007/s00339-012-7415-3
  23. Papaconstantopoulos D.A., Mehl M.J., Erwin S.C. and Pederson M.R. (1998), "Tight-binding Hamiltonians for carbon and silicon", MRS Symp. Proc., 491, 221-224.
  24. Poklonski N.A., Ratkevich S.V., Vyrko S.A., Kislyakov E.F., Bubel' O.N., Popov A.M., Lozovik Y.E., Hieu N.N. and Viet N.A. (2012), "Structural phase transition and band gap of uniaxially deformed (6,0) carbon nanotube", Chem. Phys. Lett., 545, 71-77. https://doi.org/10.1016/j.cplett.2012.07.023
  25. Reich S., Thomsen C. and Ordejon P. (2002), "Elastic properties of carbon nanotubes under hydrostatic pressure", Phys. Rev. B, 65(15), 153407. https://doi.org/10.1103/PhysRevB.65.153407
  26. Ren Y., Chen K.-Q., Wan Q., Zou B.S. and Zhang Y. (2009), "Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices", Appl. Phys. Lett., 94(18), 1835061-1835063.
  27. Shen W., Jiang, B., Han B.S. and Xie S.S. (2000), "Investigation of the radial compression of carbon nanotubes with a scanning probe microscope", Phys. Rev. Lett., 84(16), 3634-3637. https://doi.org/10.1103/PhysRevLett.84.3634
  28. Shima H., Ghosh S., Arroyo M., Iiboshi K. and Sato M. (2012), "Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes", Comp. Mater. Sci., 52(1), 90-94. https://doi.org/10.1016/j.commatsci.2011.04.005
  29. Shima H. and Sato M. (2008), "Multiple radial corrugations in multiwalled carbon nanotubes under pressure", Nanotechnology, 19(49), 495705:1-195705:8.
  30. Shima H. and Sato M. (2009), "Pressure-induced structural transitions in multi-walled carbon nanotubes", Phys. Stat. Sol. A, 206(10), 2228-2233. https://doi.org/10.1002/pssa.200881706
  31. Shima H., Sato M., Iiboshi K., Ghosh S. and Arroyo M. (2010), "Diverse corrugation pattern in radially shrinking carbon nanotubes", Phys. Rev. B, 82(8), 0854011-0854017
  32. Shima H., Yoshioka H. and Onoe J. (2009), "Geometry-driven shift in the Tomonaga-Luttinger exponent of deformed cylinders" Phys. Rev. B, 79(20), 2014011-2014014.
  33. Silvestre N. (2012), "On the accuracy of shell models for torsional buckling of carbon nanotubes", Eur. J. Mech. A/Solids, 32, 103-108. https://doi.org/10.1016/j.euromechsol.2011.09.005
  34. Silvestre N., Faria B. and Duarte A. (2012), "Multilevel approach for the local nanobuckling analysis of CNT-based composites", Coupled Systems Mech., 1(3), 269-283. https://doi.org/10.12989/csm.2012.1.3.269
  35. Tang D.S., Bao Z.X., Wang L.J., Chen L.C., Sun L.F., Liu Z.Q., Zhou W.Y. and Xie S.S. (2000), "The electrical behavior of carbon nanotubes under high pressure", J. Phys. Chem. Solids, 61(7), 1175-1178. https://doi.org/10.1016/S0022-3697(99)00381-9
  36. Tang J., Qin L.C., Sasaki T., Yudasaka M., Matsushita A. and Iijima S. (2000), "Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure", Phys. Rev. Lett., 85(9), 1887-1889. https://doi.org/10.1103/PhysRevLett.85.1887
  37. Tang J., Qin L.C., Sasaki T., Yudasaka M., Matsushita A. and Iijima S. (2002), "Revealing properties of single-walled carbon nanotubes under high pressure", J. Phys.: Condens. Matt., 14(44), 10575-10578. https://doi.org/10.1088/0953-8984/14/44/335
  38. Umeno Y. (2011), "Tight-binding calculation of deformation and band gap of single-walled carbon nanotubes under axial tension and radial compression", Proc. Eng., 14(24), 2386-2393 https://doi.org/10.1016/j.proeng.2011.07.300
  39. Umeno Y., Kitamura T. and Kushima A. (2004a), "Theoretical analysis on electronic properties of zigzag-type single-walled carbon nanotubes under radial deformation", Comp. Mater. Sci., 30(3-4), 283-287. https://doi.org/10.1016/j.commatsci.2004.02.018
  40. Umeno Y., Kitamura T. and Kushima A. (2004b), "Metallic-semiconducting transition of single-walled carbon nanotubes under high axial strain", Comp. Mater. Sci., 31(1-2), 33-41. https://doi.org/10.1016/j.commatsci.2004.01.033
  41. Wong J.H., Wu B.R. and Lin M.F. (2012), "Strain Effect on the Electronic Properties of Single Layer and Bilayer Graphene" J. Phys. Chem. C, 116(14), 8271-8277. https://doi.org/10.1021/jp300840k
  42. Yu M.F., Kowalewski T. and Ruoff R.S. (2000), "Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force", Phys. Rev. Lett., 85(7), 1456-1459. https://doi.org/10.1103/PhysRevLett.85.1456

Cited by

  1. KALEIDOSCOPIC MODE CHANGE IN CROSS-SECTIONAL DEFORMATION OF REINFORCED CARBON NANOTUBES vol.27, pp.31, 2013, https://doi.org/10.1142/S0217979213501798
  2. An analytical study on the nonlinear vibration of a double-walled carbon nanotube vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.987
  3. Atomistic origin of radial corrugation in a few-walled carbon nanotubes: A molecular dynamics study vol.65, 2015, https://doi.org/10.1016/j.physe.2014.09.010
  4. WAVY-SHAPED DEFORMATION ANALYSIS OF MULTI-WALLED CARBON NANOTUBES USING MOLECULAR DYNAMICS METHOD vol.70, pp.2, 2014, https://doi.org/10.2208/jscejam.70.i_25