References
- Aghaei A. and Dayal K. (2012), "Tension and twist of chiral nanotubes: torsional buckling, mechanical response and indicators of failure", Model. Simul. Mater. Sci. Eng., 20(8), 0850011-08500113.
- Ando T (2005), "Theory of electronic states and transport in carbon nanotubes", J. Phys. Soc. Jpn., 74(3), 777-817. https://doi.org/10.1143/JPSJ.74.777
- Azevedo S., Rosas A., Machado M., Kaschny J.R. and Chacham H. (2013), "Effects of deformation on the electronic properties of B-C-N nanotubes", J. Sol. Stat. Chem., 197, 254-260. https://doi.org/10.1016/j.jssc.2012.08.008
- Barboza A.P.M., Gomes A.P., Archanjo B.S., Araujo P.T., Jorio A. and Ferlauto A.S. (2008), "Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electronic force microscopy", Phys. Rev. Lett., 100(25), 2568041-2568044.
- Chen W., Andreev A.V., Tsvelik A.M. and Orgad D. (2008), "Twist Instability in strongly correlated carbon nanotubes", Phys. Rev. Lett., 101(24), 2468021-246804.
- Chesnokov S.A., Nalimova V.A., Rinzler A.G., Smalley R.E. and Fischer J.E. (1999), "Mechanical energy storage in carbon nanotube springs", Phys. Rev. Lett., 82(2), 343-346. https://doi.org/10.1103/PhysRevLett.82.343
- Choudhary S. and Qureshi S. (2012), "Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting SiC nanotube", Bull. Mater. Sci., 35(5), 713-718. https://doi.org/10.1007/s12034-012-0370-y
- Faria B., Silvestre N. and Canongia Lopes J.N. (2012), "Torsion-twisting dependent kinematics of chiral CNTs", Compos. Sci. Tech., 74(24), 211-220.
- Faria B., Silvestre N. and Canongia Lopes J.N. (2013), "Induced anisotropy of chiral carbon nanotubes under combined tension-twisting", Mech. Mater., 58, 97-109. https://doi.org/10.1016/j.mechmat.2012.11.004
- Farshidianfar A. and Soltani P. (2012), "Nonlinear flow-induced vibration of a SWCNT with a geometrical imperfection", Comp. Mater. Sci., 53(1), 105-116. https://doi.org/10.1016/j.commatsci.2011.08.014
- He Z., Ke X., Bais S. and Tendeloo G.V. (2012), "Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections", Carbon, 50(7), 2524-2529. https://doi.org/10.1016/j.carbon.2012.01.075
- Huang X., Liang W. and Zhang S. (2011), "Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions", Nanoscale Res. Lett., 6, 531-536. https://doi.org/10.1186/1556-276X-6-531
- Ishii H., Kataura H., Shiozawa H. and Yoshioka H. (2003), "Gate-induced crossover from unconventional metals to Fermi liquids in multiwalled carbon nanotubes", Nature, 426(6966), 540-544. https://doi.org/10.1038/nature02074
- Kanbara T., Iwasa T., Tsukagoshi K., Aoyagi Y. and Iwasa Y. (2004), "Gate-induced crossover from unconventional metals to Fermi liquids in multiwalled carbon nanotubes", Appl. Phys. Lett., 85(26), 6404-6406. https://doi.org/10.1063/1.1842373
- Ke C.-H., Pugno N., Peng B. and Espinosa H.D. (2006), "Experiments and modeling of carbon nanotube-based NEMS", J. Mech. Phys. Sol., 53(6), 1314-1333.
- Li C. and Chou T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
- Lordi V. and Yao N. (1998), "Radial compression and controlled cutting of carbon nanotubes", J. Chem. Phys., 109(6), 2509-2512. https://doi.org/10.1063/1.476822
- Lu W., Chou T-W. and Kim B-S. (2011), "Radial deformation and its related energy variations of single-walled carbon nanotubes", Phys. Rev. B, 83(13), 1341131-1341138.
- Mehl M.J. and Papaconstantpoulos D.A. (1996), "Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals", Phys. Rev. B, 54(7), 4519-4530. https://doi.org/10.1103/PhysRevB.54.4519
- Nishidate K. and Hasegawa M. (2008), "Universal band gap modulation in semiconductor single-walled carbon nanotubes", Phys. Rev. B, 78(19), 1954031-1954036.
- Ono S. and Shima H. (2009), "Tuning the electrical resistivity of semiconductor thin films by nanoscale corrugation", Phys. Rev. B, 79(23), 2354071-2354076.
- Pantano A., Campanella D., Montinaro N. and Cerniglia D. (2013), "Electronic properties of carbon nanotubes under torsion", Appl. Phys. A, 110(1), 77-85. https://doi.org/10.1007/s00339-012-7415-3
- Papaconstantopoulos D.A., Mehl M.J., Erwin S.C. and Pederson M.R. (1998), "Tight-binding Hamiltonians for carbon and silicon", MRS Symp. Proc., 491, 221-224.
- Poklonski N.A., Ratkevich S.V., Vyrko S.A., Kislyakov E.F., Bubel' O.N., Popov A.M., Lozovik Y.E., Hieu N.N. and Viet N.A. (2012), "Structural phase transition and band gap of uniaxially deformed (6,0) carbon nanotube", Chem. Phys. Lett., 545, 71-77. https://doi.org/10.1016/j.cplett.2012.07.023
- Reich S., Thomsen C. and Ordejon P. (2002), "Elastic properties of carbon nanotubes under hydrostatic pressure", Phys. Rev. B, 65(15), 153407. https://doi.org/10.1103/PhysRevB.65.153407
- Ren Y., Chen K.-Q., Wan Q., Zou B.S. and Zhang Y. (2009), "Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices", Appl. Phys. Lett., 94(18), 1835061-1835063.
- Shen W., Jiang, B., Han B.S. and Xie S.S. (2000), "Investigation of the radial compression of carbon nanotubes with a scanning probe microscope", Phys. Rev. Lett., 84(16), 3634-3637. https://doi.org/10.1103/PhysRevLett.84.3634
- Shima H., Ghosh S., Arroyo M., Iiboshi K. and Sato M. (2012), "Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes", Comp. Mater. Sci., 52(1), 90-94. https://doi.org/10.1016/j.commatsci.2011.04.005
- Shima H. and Sato M. (2008), "Multiple radial corrugations in multiwalled carbon nanotubes under pressure", Nanotechnology, 19(49), 495705:1-195705:8.
- Shima H. and Sato M. (2009), "Pressure-induced structural transitions in multi-walled carbon nanotubes", Phys. Stat. Sol. A, 206(10), 2228-2233. https://doi.org/10.1002/pssa.200881706
- Shima H., Sato M., Iiboshi K., Ghosh S. and Arroyo M. (2010), "Diverse corrugation pattern in radially shrinking carbon nanotubes", Phys. Rev. B, 82(8), 0854011-0854017
- Shima H., Yoshioka H. and Onoe J. (2009), "Geometry-driven shift in the Tomonaga-Luttinger exponent of deformed cylinders" Phys. Rev. B, 79(20), 2014011-2014014.
- Silvestre N. (2012), "On the accuracy of shell models for torsional buckling of carbon nanotubes", Eur. J. Mech. A/Solids, 32, 103-108. https://doi.org/10.1016/j.euromechsol.2011.09.005
- Silvestre N., Faria B. and Duarte A. (2012), "Multilevel approach for the local nanobuckling analysis of CNT-based composites", Coupled Systems Mech., 1(3), 269-283. https://doi.org/10.12989/csm.2012.1.3.269
- Tang D.S., Bao Z.X., Wang L.J., Chen L.C., Sun L.F., Liu Z.Q., Zhou W.Y. and Xie S.S. (2000), "The electrical behavior of carbon nanotubes under high pressure", J. Phys. Chem. Solids, 61(7), 1175-1178. https://doi.org/10.1016/S0022-3697(99)00381-9
- Tang J., Qin L.C., Sasaki T., Yudasaka M., Matsushita A. and Iijima S. (2000), "Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure", Phys. Rev. Lett., 85(9), 1887-1889. https://doi.org/10.1103/PhysRevLett.85.1887
- Tang J., Qin L.C., Sasaki T., Yudasaka M., Matsushita A. and Iijima S. (2002), "Revealing properties of single-walled carbon nanotubes under high pressure", J. Phys.: Condens. Matt., 14(44), 10575-10578. https://doi.org/10.1088/0953-8984/14/44/335
- Umeno Y. (2011), "Tight-binding calculation of deformation and band gap of single-walled carbon nanotubes under axial tension and radial compression", Proc. Eng., 14(24), 2386-2393 https://doi.org/10.1016/j.proeng.2011.07.300
- Umeno Y., Kitamura T. and Kushima A. (2004a), "Theoretical analysis on electronic properties of zigzag-type single-walled carbon nanotubes under radial deformation", Comp. Mater. Sci., 30(3-4), 283-287. https://doi.org/10.1016/j.commatsci.2004.02.018
- Umeno Y., Kitamura T. and Kushima A. (2004b), "Metallic-semiconducting transition of single-walled carbon nanotubes under high axial strain", Comp. Mater. Sci., 31(1-2), 33-41. https://doi.org/10.1016/j.commatsci.2004.01.033
- Wong J.H., Wu B.R. and Lin M.F. (2012), "Strain Effect on the Electronic Properties of Single Layer and Bilayer Graphene" J. Phys. Chem. C, 116(14), 8271-8277. https://doi.org/10.1021/jp300840k
- Yu M.F., Kowalewski T. and Ruoff R.S. (2000), "Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force", Phys. Rev. Lett., 85(7), 1456-1459. https://doi.org/10.1103/PhysRevLett.85.1456
Cited by
- KALEIDOSCOPIC MODE CHANGE IN CROSS-SECTIONAL DEFORMATION OF REINFORCED CARBON NANOTUBES vol.27, pp.31, 2013, https://doi.org/10.1142/S0217979213501798
- An analytical study on the nonlinear vibration of a double-walled carbon nanotube vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.987
- Atomistic origin of radial corrugation in a few-walled carbon nanotubes: A molecular dynamics study vol.65, 2015, https://doi.org/10.1016/j.physe.2014.09.010
- WAVY-SHAPED DEFORMATION ANALYSIS OF MULTI-WALLED CARBON NANOTUBES USING MOLECULAR DYNAMICS METHOD vol.70, pp.2, 2014, https://doi.org/10.2208/jscejam.70.i_25