DOI QR코드

DOI QR Code

Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

  • Ni, Meng (Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University)
  • Received : 2013.02.27
  • Accepted : 2013.03.24
  • Published : 2013.03.25

Abstract

Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.

Keywords

Acknowledgement

Supported by : Council (RGC) of Hong Kong

References

  1. Abashar, M.E.E., Alhumaizi, K.I. and Adris, A.M. (2003), "Investigation of methane-steam reforming in fluidized bed membrane reactors", Chem. Eng. Res. Des., 81(2), 251-258. https://doi.org/10.1205/026387603762878719
  2. Ahmed, K. and Foger, K. (2010), "Fuel processing for high temperature high efficiency fuel cells", Ind. Eng. Chem. Res., 49(16), 7239-7256. https://doi.org/10.1021/ie100778g
  3. Al-Baghdadi, M.A.R.S. and Al-Janabi, H.A.K.S. (2007), "Influence of the design parameters in a proton exchange membrane (PEM) fuel cell on the mechanical behavior of the polymer membrane", Energy Fuels, 21(4), 2258-2267. https://doi.org/10.1021/ef060596x
  4. Chase, M.W. (1998), NIST-JANAF thermochemical tables, (4th Ed.), American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology.
  5. Chanburanasiri, N., Ribeiro, A.M. and Rodrigues, A.E., Laosiripojana, N. and Assabumrungrat, S. (2013), "Simulation of methane steam reforming enhanced by in situ CO2 sorption utilization K2CO3 promoted hydrotalcites for H2 production", Energy Fuels, in press. DOI: 10.1021/ef302043e.
  6. Gallucci, F., Fernandez, E., Corengia, P.van S. and Annaland, M. (2013), "Recent advances on membranes and membrane reactors for hydrogen production", Chem. Eng. Sci., in press.
  7. Gokon, N., Osawa, Y., Nakazawa, D. and Kodama, T. (2009, "Kinetics of $CO_2$ reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors", Int. J. Hydrogen Energ., 34, 1787-1800. https://doi.org/10.1016/j.ijhydene.2008.12.018
  8. Goula, G., Kiousis, V., Nalbandian, L. and Yentekakis, I.V. (2006), "Catalytic and electrocatalytic behavior of Ni-based cermet anodes under internal dry reforming of CH4+CO2 mixtures in SOFCs", Solid State Ionics, 177, 2119-2123. https://doi.org/10.1016/j.ssi.2006.03.040
  9. Haberman, B.A. and Young, J.B. (2004), "Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell", Int. J. Heat Mass Transfer, 47, 3617-3629. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.010
  10. Halabi, M.H., Croon, M.H.J.M.D., Shaaf, J Van Der, Cobden, P.D. and Schouten, J.C. (2008), "Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer", Chem. Eng. J., 137(3), 568-578. https://doi.org/10.1016/j.cej.2007.05.019
  11. Hosseini, S., Danilov, V.A., Vijay, P. and Tade, M.O. (2011), "Improved tank in series model for the planar solid oxide fuel cell", Ind. Eng. Chem. Res., 50(2), 1056-1069. https://doi.org/10.1021/ie101129k
  12. Huang, T., Huang, W., Huang, J. and Ji, P. (2011), "Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts", Fuel Process. Technol., 92(10), 1868-1875. https://doi.org/10.1016/j.fuproc.2011.05.002
  13. Lebouvier, A., Cauneau, F. and Fulcheri, L. (2011), "2D axisymmetric coupled computational fluid dynamics-kinetics modeling of a nonthermal arc plasma torch for diesel fuel reforming", Energy Fuels, 25(7), 2833-2840. https://doi.org/10.1021/ef200471r
  14. Lemonidou, A.A., Goula, M.A. and Vasalos, I.A. (1998), "Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts - effect of preparation method", Catalysis Today, 46(2-3), 175-183. https://doi.org/10.1016/S0920-5861(98)00339-3
  15. Li, X.S., Zhu, B., Shi, C., Xu, Y. and Zhu, A.M. (2011), "Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure", AICHE J., 57(10), 2854-2860. https://doi.org/10.1002/aic.12472
  16. Lim, L.T., Chadwick, D. and Kershenbaum, L. (2005), "Achieving autothermal operation in internally reformed solid oxide fuel cells: simulation studies", Ind. Eng. Chem. Res., 44(25), 9609-9618. https://doi.org/10.1021/ie050271o
  17. Lulianelli, A., Manzolini, G., Falco, M.D., Campanari, S., Longo, T., Liguori, S. and Basile, A. (2010), "H2 production by low pressure methane reforming in a Pb-Ag membrane reactor over a Ni-based catalyst: experimental and modeling", Int. J. Hydrogen Energy, 35(20), 11514-11524. https://doi.org/10.1016/j.ijhydene.2010.06.049
  18. Mermelstein, J., Brandon, N. and Millan, M. (2009), "Impact of steam on the interaction between biomass gasification tars and nickel-based solid oxide fuel cell anode materials", Energy Fuels, 23(10), 5042-5058. https://doi.org/10.1021/ef900426g
  19. Moon, D.J. and Ryu, J.W. (2003), "Electrocatalytic reforming of carbon dioxide by methane in SOFC system", Catalysis Today, 87, 255-264. https://doi.org/10.1016/j.cattod.2003.10.017
  20. Ni, M., Leung, M.K.H., Sumathy, K. and Leung, D.Y.C. (2006), "Potential of renewable hydrogen production for energy supply in Hong Kong", Int. J. Hydrogen Energy, 31(10), 1401-1412. https://doi.org/10.1016/j.ijhydene.2005.11.005
  21. Ni, M., Leung, M.K.H., Leung, D.Y.C. and Sumathy, K. (2007), "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production", Renew. Sust. Energ. Rev., 11, 401-425. https://doi.org/10.1016/j.rser.2005.01.009
  22. Ni, M., Leung, M.K.H. and Leung D.Y.C. (2008), "Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)", Int. J. Hydrogen Energy, 33(9), 2337-2354. https://doi.org/10.1016/j.ijhydene.2008.02.048
  23. Ni, M. (2009), "On the source terms of species equations in fuel cell modeling", Int. J. Hydrogen Energy, 34, 9543-9544. https://doi.org/10.1016/j.ijhydene.2009.09.049
  24. Ni, M. (2010), "2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell", Energy Conversion Manage., 51, 714-721. https://doi.org/10.1016/j.enconman.2009.10.028
  25. Ni, M. (2011), "Thermo-electrochemical modelling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode", Int. J. Hydrogen Energy, 36, 2027-2036.
  26. Ni, M. (2012a), "2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by $H_2O$/$CO_2$ co-electrolysis", Int. J. Hydrogen Energy, 37, 6389-6399. https://doi.org/10.1016/j.ijhydene.2012.01.072
  27. Ni, M. (2012b), "Modeling of SOFC running on partially pre-reformed gas mixture", Int. J. Hydrogen Energy, 37, 1731-1745. https://doi.org/10.1016/j.ijhydene.2011.10.042
  28. Papadam, T., Goula, G. and Yentekakis I.V. (2012), "Long-term operation stability tests of intermediate and high temperature Ni-based anodes' SOFCs directly fueled with simulated biogas mixtures", Int. J. Hydrogen Energy, 37, 16680-16685. https://doi.org/10.1016/j.ijhydene.2012.02.147
  29. Patankar, S.V. (1980), Numerical heat transfer and fluid flow, McGraw-Hill, New York.
  30. Qi, Y.T., Huang, B. and Luo, J.L. (2008), "1-D dynamic modeling of SOFC with analytical solution for reacting gas-flow problem", AICHE J., 54(6), 1537-1553. https://doi.org/10.1002/aic.11433
  31. Rady, A.C., Giddey, S., Badwal, S.P.S., Ladewig, B.P. and Bhattacharya, S. (2012), "Review of fuels for direct carbon fuel cells", Energy Fuels, 26(3), 1471-1488. https://doi.org/10.1021/ef201694y
  32. Reid, R.C., Prausnitz, J.M., Poling, B.E. (1987), The properties of gases & liquids (4th Ed.), McGraw-Hill Book Company, New York.
  33. Richardson, J.T. and Paripatyadar, S.A. (1990), Carbon dioxide reforming of methane with supported rhodium. Appl.Catalysis, 61(1), 293-309. https://doi.org/10.1016/S0166-9834(00)82152-1
  34. Scheffe, J.R. and Steinfeld, A. (2012), "Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production", Energy Fuels, 26(3), 1928-1936. https://doi.org/10.1021/ef201875v
  35. Soloviev, S.O., Kapran, A.Y., Orlyk, S.N. and Gubareni, E.V. (2011), "Carbon dioxide reforming of methane on monolithic Ni/$Al_2O_3$-based catalysts", J. Natural Gas Chemistry, 20, 184-190. https://doi.org/10.1016/S1003-9953(10)60149-1
  36. Wang, C.Y. (2004), "Fundamental models for fuel cell engineerin", Chem. Rev., 104, 4727-4765. https://doi.org/10.1021/cr020718s
  37. Wang, H.Z., Leung, D.Y.C., Leung, M.K.H. and Ni, M. (2010), "Modeling of parasitic hydrogen evolution effects in an aluminum-air cell", Energy Fuels, 24(7), 3748-3753. https://doi.org/10.1021/ef901344k
  38. Yu, X.P., Wang, N., Chu, W. and Liu, M. (2012), "Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites", Chem. Eng. J., 209, 623-632. https://doi.org/10.1016/j.cej.2012.08.037
  39. Yuan, J.L., Rokni, M. and Sunden, B. (2003), "Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells", Int. J. Heat Mass Transfer, 46, 809-821. https://doi.org/10.1016/S0017-9310(02)00357-5
  40. Yuan, J.L., Lv, X.R., Sunden, B. and Yue, D.T. (2007a), "Analysis of parameter effects on transport phenomena in conjunction with chemical reactions in ducts relevant for methane reformer", Int. J. Hydrogen Energy, 32(16), 3887-3898. https://doi.org/10.1016/j.ijhydene.2007.05.037
  41. Yuan, J.L., Ren, F. and Sunden, B. (2007b), "Analysis of chemical-reaction-coupled mass and heat transport phenomena in a methane reformer duct for PEMFCs", Int. J. Heat Mass Transfer, 50, 687-701. https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.005
  42. Yuan, J.L., Yang, G.G. and Sunden, B. (2010), "On reaction coupled transport phenomenon in reformer ducts", Int. J. Hydrogen Energy, 35(13), 7183-7188. https://doi.org/10.1016/j.ijhydene.2010.01.151
  43. Zanfir, M. and Gavriilidis, A. (2003), "Catalytic combustion assisted methane steam reforming in a catalytic plate reactor", Chem.Eng. Sci., 58, 3947-3960. https://doi.org/10.1016/S0009-2509(03)00279-3
  44. Zeppieri, M., Villa, P.L., Verdone, N., Scarsella, M. and Filippis, P.D. (2010), "Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts", Applied Catalysis A: General, 387(1-2), 147-154. https://doi.org/10.1016/j.apcata.2010.08.017

Cited by

  1. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
  2. Localization of solar-hydrogen power plants in the province of Kerman, Iran vol.5, pp.2, 2013, https://doi.org/10.12989/eri.2017.5.2.179