Acknowledgement
Supported by : Council (RGC) of Hong Kong
References
- Abashar, M.E.E., Alhumaizi, K.I. and Adris, A.M. (2003), "Investigation of methane-steam reforming in fluidized bed membrane reactors", Chem. Eng. Res. Des., 81(2), 251-258. https://doi.org/10.1205/026387603762878719
- Ahmed, K. and Foger, K. (2010), "Fuel processing for high temperature high efficiency fuel cells", Ind. Eng. Chem. Res., 49(16), 7239-7256. https://doi.org/10.1021/ie100778g
- Al-Baghdadi, M.A.R.S. and Al-Janabi, H.A.K.S. (2007), "Influence of the design parameters in a proton exchange membrane (PEM) fuel cell on the mechanical behavior of the polymer membrane", Energy Fuels, 21(4), 2258-2267. https://doi.org/10.1021/ef060596x
- Chase, M.W. (1998), NIST-JANAF thermochemical tables, (4th Ed.), American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology.
- Chanburanasiri, N., Ribeiro, A.M. and Rodrigues, A.E., Laosiripojana, N. and Assabumrungrat, S. (2013), "Simulation of methane steam reforming enhanced by in situ CO2 sorption utilization K2CO3 promoted hydrotalcites for H2 production", Energy Fuels, in press. DOI: 10.1021/ef302043e.
- Gallucci, F., Fernandez, E., Corengia, P.van S. and Annaland, M. (2013), "Recent advances on membranes and membrane reactors for hydrogen production", Chem. Eng. Sci., in press.
-
Gokon, N., Osawa, Y., Nakazawa, D. and Kodama, T. (2009, "Kinetics of
$CO_2$ reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors", Int. J. Hydrogen Energ., 34, 1787-1800. https://doi.org/10.1016/j.ijhydene.2008.12.018 - Goula, G., Kiousis, V., Nalbandian, L. and Yentekakis, I.V. (2006), "Catalytic and electrocatalytic behavior of Ni-based cermet anodes under internal dry reforming of CH4+CO2 mixtures in SOFCs", Solid State Ionics, 177, 2119-2123. https://doi.org/10.1016/j.ssi.2006.03.040
- Haberman, B.A. and Young, J.B. (2004), "Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell", Int. J. Heat Mass Transfer, 47, 3617-3629. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.010
- Halabi, M.H., Croon, M.H.J.M.D., Shaaf, J Van Der, Cobden, P.D. and Schouten, J.C. (2008), "Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer", Chem. Eng. J., 137(3), 568-578. https://doi.org/10.1016/j.cej.2007.05.019
- Hosseini, S., Danilov, V.A., Vijay, P. and Tade, M.O. (2011), "Improved tank in series model for the planar solid oxide fuel cell", Ind. Eng. Chem. Res., 50(2), 1056-1069. https://doi.org/10.1021/ie101129k
- Huang, T., Huang, W., Huang, J. and Ji, P. (2011), "Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts", Fuel Process. Technol., 92(10), 1868-1875. https://doi.org/10.1016/j.fuproc.2011.05.002
- Lebouvier, A., Cauneau, F. and Fulcheri, L. (2011), "2D axisymmetric coupled computational fluid dynamics-kinetics modeling of a nonthermal arc plasma torch for diesel fuel reforming", Energy Fuels, 25(7), 2833-2840. https://doi.org/10.1021/ef200471r
- Lemonidou, A.A., Goula, M.A. and Vasalos, I.A. (1998), "Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts - effect of preparation method", Catalysis Today, 46(2-3), 175-183. https://doi.org/10.1016/S0920-5861(98)00339-3
- Li, X.S., Zhu, B., Shi, C., Xu, Y. and Zhu, A.M. (2011), "Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure", AICHE J., 57(10), 2854-2860. https://doi.org/10.1002/aic.12472
- Lim, L.T., Chadwick, D. and Kershenbaum, L. (2005), "Achieving autothermal operation in internally reformed solid oxide fuel cells: simulation studies", Ind. Eng. Chem. Res., 44(25), 9609-9618. https://doi.org/10.1021/ie050271o
- Lulianelli, A., Manzolini, G., Falco, M.D., Campanari, S., Longo, T., Liguori, S. and Basile, A. (2010), "H2 production by low pressure methane reforming in a Pb-Ag membrane reactor over a Ni-based catalyst: experimental and modeling", Int. J. Hydrogen Energy, 35(20), 11514-11524. https://doi.org/10.1016/j.ijhydene.2010.06.049
- Mermelstein, J., Brandon, N. and Millan, M. (2009), "Impact of steam on the interaction between biomass gasification tars and nickel-based solid oxide fuel cell anode materials", Energy Fuels, 23(10), 5042-5058. https://doi.org/10.1021/ef900426g
- Moon, D.J. and Ryu, J.W. (2003), "Electrocatalytic reforming of carbon dioxide by methane in SOFC system", Catalysis Today, 87, 255-264. https://doi.org/10.1016/j.cattod.2003.10.017
- Ni, M., Leung, M.K.H., Sumathy, K. and Leung, D.Y.C. (2006), "Potential of renewable hydrogen production for energy supply in Hong Kong", Int. J. Hydrogen Energy, 31(10), 1401-1412. https://doi.org/10.1016/j.ijhydene.2005.11.005
- Ni, M., Leung, M.K.H., Leung, D.Y.C. and Sumathy, K. (2007), "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production", Renew. Sust. Energ. Rev., 11, 401-425. https://doi.org/10.1016/j.rser.2005.01.009
- Ni, M., Leung, M.K.H. and Leung D.Y.C. (2008), "Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)", Int. J. Hydrogen Energy, 33(9), 2337-2354. https://doi.org/10.1016/j.ijhydene.2008.02.048
- Ni, M. (2009), "On the source terms of species equations in fuel cell modeling", Int. J. Hydrogen Energy, 34, 9543-9544. https://doi.org/10.1016/j.ijhydene.2009.09.049
- Ni, M. (2010), "2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell", Energy Conversion Manage., 51, 714-721. https://doi.org/10.1016/j.enconman.2009.10.028
- Ni, M. (2011), "Thermo-electrochemical modelling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode", Int. J. Hydrogen Energy, 36, 2027-2036.
-
Ni, M. (2012a), "2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by
$H_2O$ /$CO_2$ co-electrolysis", Int. J. Hydrogen Energy, 37, 6389-6399. https://doi.org/10.1016/j.ijhydene.2012.01.072 - Ni, M. (2012b), "Modeling of SOFC running on partially pre-reformed gas mixture", Int. J. Hydrogen Energy, 37, 1731-1745. https://doi.org/10.1016/j.ijhydene.2011.10.042
- Papadam, T., Goula, G. and Yentekakis I.V. (2012), "Long-term operation stability tests of intermediate and high temperature Ni-based anodes' SOFCs directly fueled with simulated biogas mixtures", Int. J. Hydrogen Energy, 37, 16680-16685. https://doi.org/10.1016/j.ijhydene.2012.02.147
- Patankar, S.V. (1980), Numerical heat transfer and fluid flow, McGraw-Hill, New York.
- Qi, Y.T., Huang, B. and Luo, J.L. (2008), "1-D dynamic modeling of SOFC with analytical solution for reacting gas-flow problem", AICHE J., 54(6), 1537-1553. https://doi.org/10.1002/aic.11433
- Rady, A.C., Giddey, S., Badwal, S.P.S., Ladewig, B.P. and Bhattacharya, S. (2012), "Review of fuels for direct carbon fuel cells", Energy Fuels, 26(3), 1471-1488. https://doi.org/10.1021/ef201694y
- Reid, R.C., Prausnitz, J.M., Poling, B.E. (1987), The properties of gases & liquids (4th Ed.), McGraw-Hill Book Company, New York.
- Richardson, J.T. and Paripatyadar, S.A. (1990), Carbon dioxide reforming of methane with supported rhodium. Appl.Catalysis, 61(1), 293-309. https://doi.org/10.1016/S0166-9834(00)82152-1
- Scheffe, J.R. and Steinfeld, A. (2012), "Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production", Energy Fuels, 26(3), 1928-1936. https://doi.org/10.1021/ef201875v
-
Soloviev, S.O., Kapran, A.Y., Orlyk, S.N. and Gubareni, E.V. (2011), "Carbon dioxide reforming of methane on monolithic Ni/
$Al_2O_3$ -based catalysts", J. Natural Gas Chemistry, 20, 184-190. https://doi.org/10.1016/S1003-9953(10)60149-1 - Wang, C.Y. (2004), "Fundamental models for fuel cell engineerin", Chem. Rev., 104, 4727-4765. https://doi.org/10.1021/cr020718s
- Wang, H.Z., Leung, D.Y.C., Leung, M.K.H. and Ni, M. (2010), "Modeling of parasitic hydrogen evolution effects in an aluminum-air cell", Energy Fuels, 24(7), 3748-3753. https://doi.org/10.1021/ef901344k
- Yu, X.P., Wang, N., Chu, W. and Liu, M. (2012), "Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites", Chem. Eng. J., 209, 623-632. https://doi.org/10.1016/j.cej.2012.08.037
- Yuan, J.L., Rokni, M. and Sunden, B. (2003), "Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells", Int. J. Heat Mass Transfer, 46, 809-821. https://doi.org/10.1016/S0017-9310(02)00357-5
- Yuan, J.L., Lv, X.R., Sunden, B. and Yue, D.T. (2007a), "Analysis of parameter effects on transport phenomena in conjunction with chemical reactions in ducts relevant for methane reformer", Int. J. Hydrogen Energy, 32(16), 3887-3898. https://doi.org/10.1016/j.ijhydene.2007.05.037
- Yuan, J.L., Ren, F. and Sunden, B. (2007b), "Analysis of chemical-reaction-coupled mass and heat transport phenomena in a methane reformer duct for PEMFCs", Int. J. Heat Mass Transfer, 50, 687-701. https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.005
- Yuan, J.L., Yang, G.G. and Sunden, B. (2010), "On reaction coupled transport phenomenon in reformer ducts", Int. J. Hydrogen Energy, 35(13), 7183-7188. https://doi.org/10.1016/j.ijhydene.2010.01.151
- Zanfir, M. and Gavriilidis, A. (2003), "Catalytic combustion assisted methane steam reforming in a catalytic plate reactor", Chem.Eng. Sci., 58, 3947-3960. https://doi.org/10.1016/S0009-2509(03)00279-3
- Zeppieri, M., Villa, P.L., Verdone, N., Scarsella, M. and Filippis, P.D. (2010), "Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts", Applied Catalysis A: General, 387(1-2), 147-154. https://doi.org/10.1016/j.apcata.2010.08.017
Cited by
- Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
- Localization of solar-hydrogen power plants in the province of Kerman, Iran vol.5, pp.2, 2013, https://doi.org/10.12989/eri.2017.5.2.179