DOI QR코드

DOI QR Code

Analytical polarization curve of DMFC anode

  • Kulikovsky, A.A. (Institute of Energy and Climate Research - Electrochemical Process Engineering (IEK-3), Research Centre Juelich)
  • Received : 2013.01.10
  • Accepted : 2013.03.13
  • Published : 2013.03.25

Abstract

A model for DMFC anode performance is developed. The model takes into account potential--independent methanol adsorption on the catalyst surface, finite rate of proton transport through the anode catalyst layer (ACL), and a potential loss due to methanol transport in the anode backing layer. An approximate analytical half--cell polarization curve is derived and equations for the anode limiting current density are obtained. The polarization curve is fitted to the curves measured by Nordlund and Lindbergh and parameters resulted from the fitting are discussed.

Keywords

References

  1. Argyropoulos, P., Scott, K., Shukla, A.K. and Jackson, C. (2002), "Empirical model equations for the direct methanol fuel cell", Fuel Cells, 2(2), 78-82. https://doi.org/10.1002/fuce.200290005
  2. Arisetty, S., Krewer, U., Advani, S.G. and Prasada, A.K. (2010), "Coupling of kinetic and mass transfer processes in direct methanol fuel cells", J. Electrochem. Soc., 157(10), B1443-B1455. https://doi.org/10.1149/1.3478142
  3. Bagotzky, V.S. and Vasilyev, Y.B. (1964), "Some characteristics of oxidation reactions of organic compounds of platinum electrodes", Electrochim. Acta, 9(7), 869-882. https://doi.org/10.1016/0013-4686(64)85038-6
  4. Bagotzky, V. S. and Vasilyev, Y. B. (1967), "Mechanizm of electrooxidation of methanol on the platinum electrodes", Electrochim. Acta, 12(9), 1323-1343. https://doi.org/10.1016/0013-4686(67)80047-1
  5. Baldaus, M. and Preidel, W. (2001), "Experimental results on the electrochemical oxidation of methnaol in PEM fule cells", J. Appl. Electrochem., 31(7), 781-786. https://doi.org/10.1023/A:1017583226080
  6. Baxter, S.F., Battaglia, V.S. and White, R.E. (1999), "Methanol fuel cell model: Anode", J. Electrochem. Soc., 146(2), 437-47. https://doi.org/10.1149/1.1391626
  7. Casalegno, A. and Marchesi, R. (2008), "DMFC anode polarization: Experimental analysis and model validation", J. Power Sources, 175(1), 372-382. https://doi.org/10.1016/j.jpowsour.2007.09.003
  8. Cho, C., Kim, Y. and Chang, Y.S. (2009), "Perfromance analysis of direct methanol fuel cell for optimal operation", J. Therm. Sci. Techn., 4(3), 414-423. https://doi.org/10.1299/jtst.4.414
  9. Divisek, J., Fuhrmann, J., Gartner, K. and Jung, R. (2003), "Performance modeling of a direct methanol fuel cell", J. Electrochem. Soc., 150(6), A811-A825. https://doi.org/10.1149/1.1572150
  10. Dohle, H., Divisek, J. and Jung, R. (2000), "Process engineering of the direct methanol fuel cell", J. Power Sources, 86(1-2), 469-477. https://doi.org/10.1016/S0378-7753(99)00456-5
  11. Gasteiger, H.A., Markovic′, N., P.N. Ross, J. and Cairns, E.J. (1993), "Methanol electrooxidation on well--characterized Pt-Ru alloys", J. Phys. Chem, 97(46), 12020-12029. https://doi.org/10.1021/j100148a030
  12. Havranek, A. and Wippermann, K. (2004), "Determination of proton conductivity in anode catalyst layers in direct methanol fuel cell (DMFC)", J. Electroanal. Chem., 567(2), 305-351. https://doi.org/10.1016/j.jelechem.2003.12.047
  13. Jeng, K.T. and Chen, C.W. (2002), "Modeling and simulation of a direct methanol fuel cell anode", J. Power Sources, 112(2), 367-375. https://doi.org/10.1016/S0378-7753(02)00399-3
  14. Jiang, J. and Kucernak, A. (2005), "Solid polymer electrolyte membrane composite microelectrode investigations of fuel cell reactions. II: Voltammetric study of methanol oxidation at the nanostructured platinum microelectrode/$Nafion^{(R)}$ membrane interface", J. Electroanal. Chem., 576, 223-236. https://doi.org/10.1016/j.jelechem.2004.10.019
  15. Ko, D.H., Lee, M., Jang, W.H. and Krewer, U. (2008), "Non--isothermal dynamic modelling and optimization of a direct methanol fuel cell", J. Power Sources, 180(1), 71-83. https://doi.org/10.1016/j.jpowsour.2008.01.083
  16. Krewer, U., Christov, M., Vidakovic, T. and Sundmacher, K. (2006), "Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics", J. Electroanal. Chem., 589(1), 148--159. https://doi.org/10.1016/j.jelechem.2006.01.027
  17. Krewer, U., Yoon, H.K. and Kim, H.T. (2008), "Basic model for membrane electrode assembly design for direct methanol fuel cells", J. Power Sources, 175(2), 760-772. https://doi.org/10.1016/j.jpowsour.2007.09.115
  18. Kulikovsky, A.A. (2002), "The voltage current curve of a direct methanol fuel cell: "exact" and fitting equations", Electrochem. Comm., 4(12), 939-946. https://doi.org/10.1016/S1388-2481(02)00494-0
  19. Kulikovsky, A.A. (2003), "Analytical model of the anode side of DMFC: Effect of non--Tafel kinetics on cell performance", Electrochem. Comm., 5(7), 530-538. https://doi.org/10.1016/S1388-2481(03)00115-2
  20. Kulikovsky, A.A. (2005), "Active layer of variable thickness: The limiting regime of anode catalyst layer operation in a DMFC", Electrochem. Comm., 7(10), 969-975. https://doi.org/10.1016/j.elecom.2005.07.004
  21. Kulikovsky, A.A. (2010), "The regimes of catalyst layer operation in a fuel cell", Electrochim. Acta, 55(22), 6391-6401. https://doi.org/10.1016/j.electacta.2010.06.053
  22. Kulikovsky, A.A. (2012), "Catalyst layer performance in PEM fuel cell: analytical solutions", Electrocatalysis, 3(2), 132-138. https://doi.org/10.1007/s12678-012-0091-4
  23. Lam, A., Wetton, B. and Wilkinson, D.P. (2011), "One-dimensional model for a direct methanol fuel cell with a 3D anode structure", J. Electrochem. Soc., 158(1), B29-B35. https://doi.org/10.1149/1.3505039
  24. Lamy, C. and Leger, J.M. (1991), "Electrocatalytic oxidation of small organic molecules at platinum single crystals", J. Chimie Physique, 88, 1649-1671. https://doi.org/10.1051/jcp/1991881649
  25. Meyers, J. and Newman, J. (2002), "Simulation of the direct methanol fuel cell. II. modeling and data analysis of transport and kinetic phenomena", J. Electrochem. Soc., 149(6), A718-A728. https://doi.org/10.1149/1.1473189
  26. Miao, Z., He, Y.L., Li, X.L. and Zou, J.Q. (2008), "A two-dimensional two--phase mass transport model for direct methanol fuel cells adopting a modified agglomerate approach", J. Power Sources, 185(2), 1233-1246. https://doi.org/10.1016/j.jpowsour.2008.06.007
  27. Murgia, G., Pisani, L., Shukla, A.K. and Scott, K. (2003), "A numerical model of a liquid-feed solid polymer electrolyte DMFC and its experimental validation", J. Electrochem. Soc., 150(9), A1231-A1245. https://doi.org/10.1149/1.1596951
  28. Nordlund, J. and Lindbergh, G. (2004), "Temperature--dependent kinetics of the anode in the DMFC", J. Electrochem. Soc., 151(9), A1357-A1362. https://doi.org/10.1149/1.1773580
  29. Petry, O.A., Podlovchenko, B.I., Frumkin, A.N. and Lal, H. (1965), "The behaviour of platinized-platinum and platinum-ruthenium electrodes in methanol solutions", J. Electroanal. Chem., 10(4), 253-269.
  30. Scott, K., Taama, W.M., Kramer, S., Argyropoulos, P. and Sundmacher, K. (1999), "Limiting current behaviour of the direct methanol fuel cell", Electrochimica Acta, 45(6), 945-957. https://doi.org/10.1016/S0013-4686(99)00285-6
  31. Tarasevich, M.R., Sadkowski, A. and Yeager, E. (1983), Oxygen electrochemistry, (Eds, Coway, B.E., Bockris, J.O., Yeager, E., Khan, S.U.M. and White, R.E.), Comprehensive Treatise of Electrochemistry, 7, 310-398. Plenum Press, New-York.
  32. Xu, C., He, Y. L., Zhao, T. S., Chen, R., and Ye, Q. (2006). "Analysis of mass transport of methanol at the anode of a direct methanol fuel cell", J. Electrochem. Soc., 153, A1358--A1364. https://doi.org/10.1149/1.2201467
  33. Yang, W. W. and Zhao, T. S. (2007). "A two--dimensional, two--phase mass transport model for liquid--feed DMFCs", Electrochimica Acta, 52, 6125--6140. https://doi.org/10.1016/j.electacta.2007.03.069
  34. Zhao, T. S., Xu, C., Chen, R., and Yang, W. W. (2009). "Mass transport phenomena in direct methanol fuel cells", Progress in Energy and Combustion Sci., 35, 275--292. https://doi.org/10.1016/j.pecs.2009.01.001

Cited by

  1. Transient analysis of a Direct Methanol fuel cell anode vol.191, 2016, https://doi.org/10.1016/j.electacta.2015.12.110
  2. Polarization distribution and theoretical fitting of direct methanol fuel cell vol.41, pp.36, 2016, https://doi.org/10.1016/j.ijhydene.2016.05.116