DOI QR코드

DOI QR Code

Supported nickel catalysts for the decomposition of hydrazine borane N2H4BH3

  • Cakanyildirim, Cetin (IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2) ;
  • Demirci, Umit B. (IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2) ;
  • Xu, Qiang (National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Miele, Philippe (IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2)
  • Received : 2012.10.31
  • Accepted : 2013.02.15
  • Published : 2013.03.25

Abstract

In this work, we present the catalytic dehydrogenation of hydrazine borane $N_2H_4BH_3$ (HB) using supported nickel catalysts at $50^{\circ}C$. In the presence of monometallic nickel catalysts, the dehydrogenation of HB is a one-step reaction consisting of the hydrolysis of the $BH_3$ group only. The challenge is to activate nickel to make it reactive towards the $N_2H_4$ moiety of HB. A set of 52 catalysts were prepared by using 2 supports ($Al_2O_3$ and $TiO_2$), 5 nickel precursors and 3 preparation methods. For the first time, we show that the supported nickel catalysts are able to dehydrogenate the $NH_3$ moiety of HB. In our experimental conditions, the best results were obtained with 20 wt% Ni-$Al_2O_3$ and 20 wt% Ni-$TiO_2$, with ca. 190 mL $H_2+N_2$ generated over a total theoretical volume of 283 mL, suggesting $H_2$ selectivity of 37 and 32%, respectively. Both catalysts were then characterized by EDX, XPS, and XRD. Our achievement is the first step forward and opens new perspectives for developing catalysts for the total dehydrogenation of HB.

Keywords

References

  1. Akdim, O., Demirci, U.B. and Miele, P. (2009), "Highly efficient acid-treated cobalt catalyst for hydrogen generation from $NaBH_4$ hydrolysis, Int. J. Hydrogen Energ., 34(11), 4780-4787. https://doi.org/10.1016/j.ijhydene.2009.04.009
  2. Arata, K. (1990), "Solid superacids", Adv. Catal., 37, 165-211. https://doi.org/10.1016/S0360-0564(08)60365-X
  3. Arzac, G.M., Rojas, T.C. and Fernandez, A. (2011), "Boron compounds as stabilizers of a complex microstructure in a Co-B-based catalyst for $NaBH_4$ hydrolysis", Chem. Cat. Chem., 3(8), 1305-1313.
  4. Brown, A.S.C. and Hargreaves, J.S.J. (1999), "Sulfated metal oxide catalysts - superactivity through superacidity?", Green Chem., 1, 17-20. https://doi.org/10.1039/a807963c
  5. Cakanyildirim, C., Demirci, U.B., Sener, T., Xu, Q. and Miele, P. (2012), "Nickel-based bimetallic nanocatalysts in high-extent dehydrogenation of hydrazine borane", Int. J. Hydrogen Energ., 37(12), 9722-9729. https://doi.org/10.1016/j.ijhydene.2012.03.054
  6. Cakanyildirim, C., Petit, E., Demirci, U.B., Moury, R., Petit, J.F., Xu, Q. and Miele, P. (2012), "Gaining insight into the catalytic dehydrogenation of hydrazine borane in water", Int. J. Hydrogen Energ., 37(21), 15983-15991. https://doi.org/10.1016/j.ijhydene.2012.08.032
  7. Celik, D., Karahan, S., Zahmakiran, M. and Ozkar, S. (2011), "Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite", Int. J. Hydrogen Energ., 37(6), 5143-5151.
  8. Chandra, M. and Xu, Q. (2006), "Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: an efficient hydrogen generation system", J. Power Sources, 159(2), 855-860. https://doi.org/10.1016/j.jpowsour.2005.12.033
  9. Christian, M.L. and Aguey-Zinsou, K.F. (2012). "Core-shell strategy leading to high reversible hydrogen storage capacity for $NaBH_4$", ACS Nano, 6, 7739-7751. https://doi.org/10.1021/nn3030018
  10. Demirci, U.B. and Miele P. (2009), "Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage", Int. J. Hydrogen Energ., 34(6), 2638-2645. https://doi.org/10.1016/j.ijhydene.2009.01.038
  11. Demirci, U.B. and Miele, P. (2010), "Hydrolysis of solid ammonia borane", J. Power Sources, 195(13), 4030-4035. https://doi.org/10.1016/j.jpowsour.2010.01.002
  12. Eberle, U., Felderhoff, M. and Schuth, F. (2009), "Chemcial and physical solutions for hydrogen storage", Angew. Chem. Int. Edit., 48(36), 6608-6630. https://doi.org/10.1002/anie.200806293
  13. Hamilton, C.W., Baker, R.T., Staubitz, A. and Manners, I. (2009), "B-N compounds for chemical hydrogen storage", Chem. Soc. Rev. 38, 279-293. https://doi.org/10.1039/b800312m
  14. Hannauer, J., Akdim, O., Demirci, U.B., Geantet, C., Herrmann, J.M., Miele, P. and Xu, Q. (2011), "Highextent dehydrogenation of hydrazine borane $N_2H_4BH_3$ by hydrolysis of $BH_3$ and decomposition of $N_2H_4$", Energy Environ. Sci., 4, 3355-3358. https://doi.org/10.1039/c1ee01886h
  15. He, L., Huang, Y., Wang, A., Wang, X., Chen, X., Delgado, J.J. and Zhang, T. (2012), "A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from $N_2H_4$.$H_2O$ decomposition", Angew. Chem. Int. Edit., 51, 6191-6194. https://doi.org/10.1002/anie.201201737
  16. Karahan, S., Zahmakiran, M. and Ozkar, S. (2011), "Catalytic hydrolysis of hydrazine borane for chemical hydrogen storage: highly efficient and fast hydrogen generation system at room temperature", Int. J. Hydrogen Energy, 36, 4958-4966. https://doi.org/10.1016/j.ijhydene.2010.12.129
  17. Kim, J.H., Kim, K.T., Kang, Y.M., Kim, H.S., Song, M.S., Lee, Y.J., Lee, P.S. and Lee, J.Y. (2004), "Study on degradation of filamentary Ni catalyst on hydrolysis of sodium borohydride", J. Alloy. Compd., 379(1-2), 222-227. https://doi.org/10.1016/j.jallcom.2004.02.009
  18. Lim, K.L., Kazemian, H., Yaakob, Z. and Daud, W.R.W. (2010), "Solid-state materials and methods for hydrogen storage: a critical review", Chem. Eng. Technol., 33(2), 213-226. https://doi.org/10.1002/ceat.200900376
  19. Liu, B.H. and Li, Z.P. (2009), "A review: hydrogen generation from borohydride hydrolysis reaction", J. Power Sources, 187(2), 527-534. https://doi.org/10.1016/j.jpowsour.2008.11.032
  20. Lu, Z.H. and Xu, Q. (2012), "Recent progress in boron- and nitrogen-based chemical hydrogen storage", Funct. Mater. Lett., 5, 1230001-1-9. https://doi.org/10.1142/S1793604712300010
  21. Metin, O., Mazumder, V., Ozkar, S. and Sun, S. (2010), "Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane", J. Am. Chem. Soc., 132(5), 1468-1469. https://doi.org/10.1021/ja909243z
  22. Moury, R., Moussa, G., Demirci, U.B., Hannauer, J., Bernard, S., Petit, E., van der Lee, A. and Miele, P. (2012), "Hydrazine borane: synthesis, characterization, and application prospects in chemical hydrogen storage", Phys. Chem. Chem. Phys., 14, 1768-1777. https://doi.org/10.1039/c2cp23403c
  23. Nie, M., Zou, Y.C., Huang, Y.M. and Wang, J.Q. (2012), "Ni-Fe-B catalysts for $NaBH_4$ hydrolysis", Int. J. Hydrogen Energ., 37(2), 1568-1576. https://doi.org/10.1016/j.ijhydene.2011.10.006
  24. Sanyal, U., Demirci, U.B., Jagirdar, B.R. and Miele, P. (2011), "Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation", Chem. Sus. Chem., 4(12), 1731-1739. https://doi.org/10.1002/cssc.201100318
  25. Sartbaeva, A., Kuznetsov, V.L., Wells, S.A. and Edwards, P.P. (2008), "Hydrogen nexus in a sustainable energy future", Energy Environ. Sci., 1, 79-85. https://doi.org/10.1039/b810104n
  26. Singh, S.K., Singh, A.K., Aranishi, K. and Xu, Q. (2011), "Noble-metal-free bimetallic nanoparticlecatalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage", J. Am. Chem. Soc., 133(49), 19638-19641. https://doi.org/10.1021/ja208475y
  27. Walter, J.C., Zurawski, A., Montgomery, D., Thornburg, M. and Revankar, S. (2008), "Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts", J. Power Sources, 179(1), 335-339. https://doi.org/10.1016/j.jpowsour.2007.12.006
  28. Zhong, D.C., Aranishi, K., Singh, A.K., Demirci, U.B. and Xu, Q. (2012), "Synergistic effect of RhNi catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage", Chem. Commun., DOI: 10.1039/C2CC36407G.

Cited by

  1. Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials vol.8, pp.12, 2015, https://doi.org/10.3390/en8043118
  2. The performance of a single-cylinder diesel engine fuelled with egusi based biodiesel vol.469, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/469/1/012045