Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- C. Kang, C. Kee, I. Sohn, and J. Lee, "Spectral properties of THz-periodic metallic structures," J. Opt. Soc. Korea 12, 196-199 (2008). https://doi.org/10.3807/JOSK.2008.12.3.196
- P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004). https://doi.org/10.1109/TMTT.2004.835916
- E. Jung, M. Lim, K. Moon, Y. Do, S. Lee, H. Han, H. Choi, K. Cho, and K. Kim, "Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients," J. Opt. Soc. Korea 15, 155-160 (2011). https://doi.org/10.3807/JOSK.2011.15.2.155
- F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, "Terahertz quality control of polymeric products," Int. J. Infrared Millimeter Waves 27, 547-556 (2006).
- T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Milli. Terahz. Waves 32, 143-171 (2011). https://doi.org/10.1007/s10762-010-9758-1
- Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, USA, 2009), Chapter 3.
- X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, USA, 2010).
- S. Caygill, F. Davis, and S. P. J. Higson, "Current trends in explosive detection techniques," Talanta 88, 14-29 (2012). https://doi.org/10.1016/j.talanta.2011.11.043
- M. R. Leahy-Hoppa and M. J. Fitch, "Terahertz spectroscopy techniques for explosives detection," Anal. Bioanal. Chem. 395, 247-257 (2009). https://doi.org/10.1007/s00216-009-2803-z
- H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, "Terahertz spectroscopy and imaging for defense and security applications," Proc. IEEE 95, 1514-1527 (2007). https://doi.org/10.1109/JPROC.2007.898903
- H.-B. Liu, Y. Chen, G. Bastiaans, and X.-C. Zhang, "Detection and identification of explosive RDX by THz diffuse reflection spectroscopy," Opt. Express 14, 415-423 (2006). https://doi.org/10.1364/OPEX.14.000415
- J. Chen, Y. Chen, H. Zhao, G. Bastiaans, and X.-C. Zhang, "Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz," Opt. Express 15, 12060-12067 (2007). https://doi.org/10.1364/OE.15.012060
- D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: A time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005). https://doi.org/10.1109/JPROC.2005.853539
- M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, "Wideband terahertz spectroscopy of explosives," Chem. Phys. Lett. 434, 227-230 (2007). https://doi.org/10.1016/j.cplett.2006.12.015
- M. van Exter, Ch. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989). https://doi.org/10.1364/OL.14.001128
- J. Kroll, J. Darmo, and K. Unterrainer, "High-performance terahertz electro-optic detector," Electron. Lett. 40, 763-764 (2004). https://doi.org/10.1049/el:20040492
- D. Turchinovich and J. I. Dijkhuis, "Performance of combined <100> - <110> ZnTe crystals in an amplified THz timedomain spectrometer," Opt. Commun. 270, 96-99 (2007). https://doi.org/10.1016/j.optcom.2006.08.045
- Y. Kim, K. H. Jin, J. C. Ye, J. Ahn, and D. Yee, "Wavelet power spectrum estimation for high-resolution terahertz time-domain spectroscopy," J. Opt. Soc. Korea 15, 103-108 (2011). https://doi.org/10.3807/JOSK.2011.15.1.103
- D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, "Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379-390 (1998). https://doi.org/10.1007/s003400050520
- B. Ferguson and D. Abbott, "De-noising techniques for terahertz responses of biological samples," Microelectron. J. 32, 943-953 (2001). https://doi.org/10.1016/S0026-2692(01)00093-3
- B. Ferguson and D. Abbott, "Wavelet de-noising of optical terahertz pulse imaging data," Fluct. Noise Lett. 1, L65-L69 (2001). https://doi.org/10.1142/S0219477501000226
- A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, "Terahertz spectroscopy of explosives and drugs," Mater. Today 11, 18-26 (2008).
- J. Choi, S. Y. Ryu, W. Kwon, K.-S. Kim, and S. Kim, "Data processing of terahertz signals for in situ explosives detection and component analysis via terahertz time-domain spectroscopy," in Proc. The 37 th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMWTHz) (University of Wollongong, Australia, Sep. 2013).
- I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992).
- G. Strang and T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, MA, USA, 1997).
- P. Moulin, "Wavelet thresholding techniques for power spectrum estimation," IEEE Trans. Sig. Proc. 42, 3126-3136 (1994). https://doi.org/10.1109/78.330372
- P. J. Brown, "Wavelength selection in multicomponent nearinfrared calibration," J. Chemometrics 6, 151-161 (1992). https://doi.org/10.1002/cem.1180060306
- H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, "Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy," NeuroImage 21, 1554-1562 (2004). https://doi.org/10.1016/j.neuroimage.2003.12.017
Cited by
- A High Birefringent Polymer Terahertz Waveguide: Suspended Elliptical Core Fiber vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.453
- Nondestructive evaluation of multilayered paint films in ambient atmosphere using terahertz reflection spectroscopy vol.80, 2016, https://doi.org/10.1016/j.ndteint.2016.02.011
- Extracting Complex Refractive Index from Polycrystalline Glucose with Self-Referenced Method for Terahertz Time-Domain Reflection Spectroscopy vol.70, pp.7, 2016, https://doi.org/10.1177/0003702816652318
- The Anomalous Influence of Spectral Resolution on Pulsed THz Time Domain Spectroscopy under Real Conditions vol.17, pp.12, 2017, https://doi.org/10.3390/s17122883
- Wavelength Selection for Quantitative Analysis in Terahertz Spectroscopy Using a Genetic Algorithm 2016, https://doi.org/10.1109/TTHZ.2016.2584922
- New Possibilities of Substance Identification Based on THz Time Domain Spectroscopy Using a Cascade Mechanism of High Energy Level Excitation vol.17, pp.12, 2017, https://doi.org/10.3390/s17122728
- Advances in explosives analysis—part II: photon and neutron methods vol.408, pp.1, 2016, https://doi.org/10.1007/s00216-015-9043-1
- Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy vol.71, pp.12, 2017, https://doi.org/10.1177/0003702817722367
- Nondestructive Material Characterization in the Terahertz Band by Selective Extraction of Sample-Induced Echo Signals vol.34, pp.1, 2015, https://doi.org/10.1007/s10921-014-0269-1
- Wavelength selection of amino acid THz absorption spectra for quantitative analysis by a self-adaptive genetic algorithm and comparison with mwPLS vol.132, 2017, https://doi.org/10.1016/j.microc.2017.02.002
- Recent Developments in Spectroscopic Techniques for the Detection of Explosives vol.11, pp.8, 2018, https://doi.org/10.3390/ma11081364