DOI QR코드

DOI QR Code

Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy

  • Received : 2013.07.16
  • Accepted : 2013.09.17
  • Published : 2013.10.25

Abstract

We present qualitative and quantitative component analyses on compound explosives via Terahertz time-domain spectroscopy (THz-TDS) based on a combination of wavelet thresholding and wavelength selection. Despite its importance, the field of signal processing of THz signals of compound plastic explosives is relatively unexplored. In this paper, experiment results from explosives Composition B-3 and Pentolite are newly presented, suggesting a novel signal processing procedure for in situ compound explosives detection. The proposed signal processing method demonstrates effective component analysis even in noisy and humid environments, showing significant decrease in component concentration percentage error of approximately 22.7% for Composition B-3 and 48.8% for Pentolite.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. C. Kang, C. Kee, I. Sohn, and J. Lee, "Spectral properties of THz-periodic metallic structures," J. Opt. Soc. Korea 12, 196-199 (2008). https://doi.org/10.3807/JOSK.2008.12.3.196
  2. P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004). https://doi.org/10.1109/TMTT.2004.835916
  3. E. Jung, M. Lim, K. Moon, Y. Do, S. Lee, H. Han, H. Choi, K. Cho, and K. Kim, "Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients," J. Opt. Soc. Korea 15, 155-160 (2011). https://doi.org/10.3807/JOSK.2011.15.2.155
  4. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, "Terahertz quality control of polymeric products," Int. J. Infrared Millimeter Waves 27, 547-556 (2006).
  5. T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Milli. Terahz. Waves 32, 143-171 (2011). https://doi.org/10.1007/s10762-010-9758-1
  6. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, USA, 2009), Chapter 3.
  7. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, USA, 2010).
  8. S. Caygill, F. Davis, and S. P. J. Higson, "Current trends in explosive detection techniques," Talanta 88, 14-29 (2012). https://doi.org/10.1016/j.talanta.2011.11.043
  9. M. R. Leahy-Hoppa and M. J. Fitch, "Terahertz spectroscopy techniques for explosives detection," Anal. Bioanal. Chem. 395, 247-257 (2009). https://doi.org/10.1007/s00216-009-2803-z
  10. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, "Terahertz spectroscopy and imaging for defense and security applications," Proc. IEEE 95, 1514-1527 (2007). https://doi.org/10.1109/JPROC.2007.898903
  11. H.-B. Liu, Y. Chen, G. Bastiaans, and X.-C. Zhang, "Detection and identification of explosive RDX by THz diffuse reflection spectroscopy," Opt. Express 14, 415-423 (2006). https://doi.org/10.1364/OPEX.14.000415
  12. J. Chen, Y. Chen, H. Zhao, G. Bastiaans, and X.-C. Zhang, "Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz," Opt. Express 15, 12060-12067 (2007). https://doi.org/10.1364/OE.15.012060
  13. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: A time of reckoning future applications?," Proc. IEEE 93, 1722-1743 (2005). https://doi.org/10.1109/JPROC.2005.853539
  14. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, "Wideband terahertz spectroscopy of explosives," Chem. Phys. Lett. 434, 227-230 (2007). https://doi.org/10.1016/j.cplett.2006.12.015
  15. M. van Exter, Ch. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989). https://doi.org/10.1364/OL.14.001128
  16. J. Kroll, J. Darmo, and K. Unterrainer, "High-performance terahertz electro-optic detector," Electron. Lett. 40, 763-764 (2004). https://doi.org/10.1049/el:20040492
  17. D. Turchinovich and J. I. Dijkhuis, "Performance of combined <100> - <110> ZnTe crystals in an amplified THz timedomain spectrometer," Opt. Commun. 270, 96-99 (2007). https://doi.org/10.1016/j.optcom.2006.08.045
  18. Y. Kim, K. H. Jin, J. C. Ye, J. Ahn, and D. Yee, "Wavelet power spectrum estimation for high-resolution terahertz time-domain spectroscopy," J. Opt. Soc. Korea 15, 103-108 (2011). https://doi.org/10.3807/JOSK.2011.15.1.103
  19. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, "Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379-390 (1998). https://doi.org/10.1007/s003400050520
  20. B. Ferguson and D. Abbott, "De-noising techniques for terahertz responses of biological samples," Microelectron. J. 32, 943-953 (2001). https://doi.org/10.1016/S0026-2692(01)00093-3
  21. B. Ferguson and D. Abbott, "Wavelet de-noising of optical terahertz pulse imaging data," Fluct. Noise Lett. 1, L65-L69 (2001). https://doi.org/10.1142/S0219477501000226
  22. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, "Terahertz spectroscopy of explosives and drugs," Mater. Today 11, 18-26 (2008).
  23. J. Choi, S. Y. Ryu, W. Kwon, K.-S. Kim, and S. Kim, "Data processing of terahertz signals for in situ explosives detection and component analysis via terahertz time-domain spectroscopy," in Proc. The 37 th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMWTHz) (University of Wollongong, Australia, Sep. 2013).
  24. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992).
  25. G. Strang and T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, MA, USA, 1997).
  26. P. Moulin, "Wavelet thresholding techniques for power spectrum estimation," IEEE Trans. Sig. Proc. 42, 3126-3136 (1994). https://doi.org/10.1109/78.330372
  27. P. J. Brown, "Wavelength selection in multicomponent nearinfrared calibration," J. Chemometrics 6, 151-161 (1992). https://doi.org/10.1002/cem.1180060306
  28. H. Sato, M. Kiguchi, F. Kawaguchi, and A. Maki, "Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy," NeuroImage 21, 1554-1562 (2004). https://doi.org/10.1016/j.neuroimage.2003.12.017

Cited by

  1. A High Birefringent Polymer Terahertz Waveguide: Suspended Elliptical Core Fiber vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.453
  2. Nondestructive evaluation of multilayered paint films in ambient atmosphere using terahertz reflection spectroscopy vol.80, 2016, https://doi.org/10.1016/j.ndteint.2016.02.011
  3. Extracting Complex Refractive Index from Polycrystalline Glucose with Self-Referenced Method for Terahertz Time-Domain Reflection Spectroscopy vol.70, pp.7, 2016, https://doi.org/10.1177/0003702816652318
  4. The Anomalous Influence of Spectral Resolution on Pulsed THz Time Domain Spectroscopy under Real Conditions vol.17, pp.12, 2017, https://doi.org/10.3390/s17122883
  5. Wavelength Selection for Quantitative Analysis in Terahertz Spectroscopy Using a Genetic Algorithm 2016, https://doi.org/10.1109/TTHZ.2016.2584922
  6. New Possibilities of Substance Identification Based on THz Time Domain Spectroscopy Using a Cascade Mechanism of High Energy Level Excitation vol.17, pp.12, 2017, https://doi.org/10.3390/s17122728
  7. Advances in explosives analysis—part II: photon and neutron methods vol.408, pp.1, 2016, https://doi.org/10.1007/s00216-015-9043-1
  8. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy vol.71, pp.12, 2017, https://doi.org/10.1177/0003702817722367
  9. Nondestructive Material Characterization in the Terahertz Band by Selective Extraction of Sample-Induced Echo Signals vol.34, pp.1, 2015, https://doi.org/10.1007/s10921-014-0269-1
  10. Wavelength selection of amino acid THz absorption spectra for quantitative analysis by a self-adaptive genetic algorithm and comparison with mwPLS vol.132, 2017, https://doi.org/10.1016/j.microc.2017.02.002
  11. Recent Developments in Spectroscopic Techniques for the Detection of Explosives vol.11, pp.8, 2018, https://doi.org/10.3390/ma11081364