DOI QR코드

DOI QR Code

Inhibition of Microcystis aeruginosa by the Extracellular Substances from an Aeromonas sp.

  • Liu, Yu-Mei (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University) ;
  • Chen, Ming-Jun (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University) ;
  • Wang, Meng-Hui (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University) ;
  • Jia, Rui-Bao (Jinan Water and Waste Water Monitoring Center) ;
  • Li, Li (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University)
  • Received : 2013.04.10
  • Accepted : 2013.05.09
  • Published : 2013.09.28

Abstract

Growth of Microcystis aeruginosa could be inhibited significantly within 24 h by the extracellular substances prepared from Aeromonas sp. strain FM. During the treatment, the concentration of extracellular soluble carbohydrates increased significantly in algal culture. Morphological and ultrastructural changes in M. aeruginosa cells, including breakage of the cell surface, secretion of mucilage, and intracellular disorganization of thylakoids, were observed. HPLC-MS analysis showed that the extracellular substances of Aeromonas sp. strain FM were a mixture of free amino acids, tripeptides, and clavulanate. Among these, the algaelysis effects of lysine and clavulanate were confirmed.

Keywords

References

  1. Banin E, Khare SK, Naider F, Rosenberg E. 2001. Prolinerich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl. Environ. Microbiol. 67: 1536-1541. https://doi.org/10.1128/AEM.67.4.1536-1541.2001
  2. Bi XD, Zhang SL, Dai W, Xing KZ, Yang F. 2013. Effects of lead(II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa. Water Sci. Technol. 67: 803-809. https://doi.org/10.2166/wst.2012.632
  3. Bruckner CG, Rehm C, Grossart HP, Kroth PG. 2011. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ. Microbiol. 13: 1052-1063. https://doi.org/10.1111/j.1462-2920.2010.02411.x
  4. Chen WM, Sheu FS, Sheu SY. 2011. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzyme Microb. Technol. 49: 372-379. https://doi.org/10.1016/j.enzmictec.2011.06.016
  5. Choi H, Kim B, Kim J, Han M. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (cyanobacteria) in eutrophic freshwaters. Biol. Control 33: 335-343. https://doi.org/10.1016/j.biocontrol.2005.03.007
  6. Cho JY. 2012. Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds. Biosci. Biotechnol. Biochem. 76: 1452-1458. https://doi.org/10.1271/bbb.120102
  7. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  8. Formi C, Telo' FR, Caiola MG. 1997. Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia 36: 181-185. https://doi.org/10.2216/i0031-8884-36-3-181.1
  9. Gan N, Xiao Y, Zhu L, Wu Z, Liu J, Hu C, Song L. 2012. The role of microcystins in maintaining colonies of bloomforming Microcystis spp. Environ. Microbiol. 14: 730-742. https://doi.org/10.1111/j.1462-2920.2011.02624.x
  10. Jung SW, Kang YH, Baek SH, Lim D, Han MS. 2013. Biological control of Stephanodiscus hantzschii (Bacillariophyceae) blooms in a field mesocosm by the immobilized algicidal bacterium Pseudomonas fluorescens HYK0210-SK09. J. Appl. Phycol. 25: 41-50. https://doi.org/10.1007/s10811-012-9836-y
  11. Kang YH, Park CS, Han MS. 2012. Pseudomonas aeruginosa UCBPP-PA14, a useful bacterium capable of lysing Microcystis aeruginosa cells and degrading microcystins. J. Appl. Phycol. 24: 1517-1525. https://doi.org/10.1007/s10811-012-9812-6
  12. Kang YK, Cho SY, Kang YH, Katano T, Jin ES, Kong DS, Han MS. 2008. Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. J. Appl. Phycol. 20: 375-386. https://doi.org/10.1007/s10811-007-9267-3
  13. Kim BH, Sang M, Hwang SJ, Han MS. 2008. In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa: implications for biological bloom control. Limnol. Oceanogr. Methods 6: 513-522. https://doi.org/10.4319/lom.2008.6.513
  14. Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK. 2008. Red to red - the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J. Microbiol. Biotechnol. 18: 1621-1629.
  15. Kim JD, Lee CG. 2006. Antialgal effect of a novel polysaccharolytic Sinorhizobium kostiense AFK-13 on Anabaena flos-aquae causing water bloom. J. Microbiol. Biotechnol. 16: 1613-1621.
  16. Kim JD, Lee CG. 2007. Purification and characterization of extracellular $\beta$-glucosidase from Sinorhizobium kostiense AFK-13 and its algal lytic effect on Anabaena flos-aquae. J. Microbiol. Biotechnol. 17: 745-752.
  17. Kim YS, Lee DS, Jeong SY, Lee WJ, Lee MS. 2009. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina. J. Microbiol. 47: 9-18. https://doi.org/10.1007/s12275-008-0141-z
  18. Kodani S, Imoto A, Mitsutani A, Murakami M. 2002. Isolation and identification of the antialgal compound, harmane (1-methyl-$\beta$-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14: 109-114. https://doi.org/10.1023/A:1019533414018
  19. Kong Y, Xu X, Zhu L. 2013. Cyanobactericidal effect of Streptomyces sp. HJC-D1 on Microcystis aeruginosa. PLoS One 8: e57654. https://doi.org/10.1371/journal.pone.0057654
  20. Lee S, Kato J, Takiguchi N, Kuroda A, Ikeda T, Mitsutani A, Ohtake H. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66: 4334-4339. https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  21. Lee YK, Ahn CY, Kim HS, Oh HM. 2010. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Biotechnol. Lett. 32: 1673-1678. https://doi.org/10.1007/s10529-010-0350-5
  22. Liu YM, Wang MH, Jia RB, Li L. 2012. Removal of cyanobacteria by an Aeromonas sp. Desalin. Water Treat. 47: 205-210. https://doi.org/10.1080/19443994.2012.696805
  23. Li Y, Hongyi W, Komatsu M, Ishibashi K, Jinsan L, Ito T, et al. 2012. Isolation and characterization of bacterial isolates algicidal against a harmful bloom-forming cyanobacterium Microcystis aeruginosa. Biocontrol Sci. 17: 107-114. https://doi.org/10.4265/bio.17.107
  24. Ozaki K, Ito E, Tanabe S, Natsume K, Tsuji K, Harada K. 2009. Electron microscopic study on lysis of a cyanobacterium Microcystis. J. Health Sci. 55: 578-585. https://doi.org/10.1248/jhs.55.578
  25. Park SC, Lee JK, Kim SW, Park Y. 2011. Selective algicidal action of peptides against harmful algal bloom species. PLoS One 6: e26733. https://doi.org/10.1371/journal.pone.0026733
  26. Wang MH, Peng P, Liu YM, Jia RB, Li L. 2013. Algicidal activity of a dibenzofuran-degrader Rhodococcus sp. J. Microbiol. Biotechnol. 23: 260-266. https://doi.org/10.4014/jmb.1208.08018
  27. Wang X, Gong L, Liang S, Han X, Zhu C, Li Y. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4: 433-443. https://doi.org/10.1016/j.hal.2004.06.001
  28. Wu Y, Liu J, Yang L, Chen H, Zhang S, Zhao H, et al. 2011. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ. Microbiol. 13: 604-615. https://doi.org/10.1111/j.1462-2920.2010.02363.x
  29. Yang Z, Kong F. 2012. Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. J. Limnol. 71: 61-66.
  30. Yoshikawa K, Adachi K, Nishijima M, Takadera T, Tamaki S, Harada K, et al. 2000. $\beta$-Cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria. Appl. Environ. Microbiol. 66: 718-722. https://doi.org/10.1128/AEM.66.2.718-722.2000

Cited by

  1. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa vol.6, pp.6, 2014, https://doi.org/10.3390/w6061807
  2. Bacteria homologus to Aeromonas capable of microcystin degradation vol.10, pp.1, 2013, https://doi.org/10.1515/biol-2015-0012
  3. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies vol.28, pp.2, 2013, https://doi.org/10.1007/s10811-015-0659-5
  4. Anticyanobacterial effect ofL-lysine onMicrocystis aeruginosa vol.8, pp.38, 2013, https://doi.org/10.1039/c8ra00434j
  5. Increased algicidal activity of Aeromonas veronii in response to Microcystis aeruginosa: interspecies crosstalk and secondary metabolites synergism vol.21, pp.3, 2019, https://doi.org/10.1111/1462-2920.14561
  6. Spatial variation in bacterial biomass, community composition and driving factors across a eutrophic river vol.205, pp.None, 2013, https://doi.org/10.1016/j.ecoenv.2020.111113