DOI QR코드

DOI QR Code

Effect of the Antimicrobial Peptide $\small{D}$-Nal-Pac-525 on the Growth of Streptococcus mutans and Its Biofilm Formation

  • Li, Huajun (Department of Biochemistry and Molecular Biology, Dalian Medical University) ;
  • Cheng, Jya-Wei (Institute of Biotechnology and Department of Medical Science, National Tsing Hua University) ;
  • Yu, Hui-Yuan (Institute of Biotechnology and Department of Medical Science, National Tsing Hua University) ;
  • Xin, Yi (Department of Biotechnology, Dalian Medical University) ;
  • Tang, Li (Department of Microecology, Dalian Medical University) ;
  • Ma, Yufang (Department of Biochemistry and Molecular Biology, Dalian Medical University)
  • Received : 2013.12.14
  • Accepted : 2013.04.23
  • Published : 2013.08.28

Abstract

Streptococcus mutans is the primary etiological agent of dental caries. The antimicrobial peptide $\small{D}$-Nal-Pac-525 was designed by replacing the tryptophans of the Trp-rich peptide Pac-525 with $\small{D}$-${\beta}$-naphthyalanines. To assess the effect of $\small{D}$-Nal-Pac-525 on cariogenic bacteria, the activity of $\small{D}$-Nal-Pac-525 on the growth of S. mutans and its biofilm formation were examined. $\small{D}$-Nal-Pac-525 showed robust antimicrobial activity against S. mutans (minimum inhibitory concentration of 4 ${\mu}g/ml$). Using scanning electron microscopy and transmission electron microscopy, it was shown that $\small{D}$-Nal-Pac-525 caused morphological changes and damaged the cell membrane of S. mutans. $\small{D}$-Nal-Pac-525 inhibited biofilm formation of S. mutans at 2 ${\mu}g/ml$. The results of this study suggest that $\small{D}$-Nal-Pac-525 has great potential for clinical application as a dental caries-preventing agent.

Keywords

References

  1. Beckloff N, Laube D, Castro T, Furgang D, Park S, Perlin D, et al. 2007. Activity of an antimicrobial peptide minetic against planktonic and biofilm culture of oral pathogens. Antimicrob. Agents Chemother. 51: 4125-4132.
  2. Chastre J. 2008. Evolving problems with resistant pathogens. Clin. Microbiol. Infect. 14: 3-14.
  3. Clinical and Laboratory Standards Institute. 2005. Performance Standards for Antimicrobial Susceptibility Testing: Fifteenth Informational Supplement M100-S15. CLSI, Wayne, PA, USA.
  4. Elbaz M, Ben-Yehua S. 2010. The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology. PloS Genet. 6: e1001119. https://doi.org/10.1371/journal.pgen.1001119
  5. Hancock RW, Patrzykat A. 2002. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disord. 2: 79-83. https://doi.org/10.2174/1568005024605855
  6. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. 2010. D-Amino acids trigger biofilm disassembly. Science 328: 627-629. https://doi.org/10.1126/science.1188628
  7. Lemos JA, Abranches J, Burne RA. 2005. Responses of cariogenic streptococci to environmental stresses. Curr. Issues Mol. Biol. 7: 95-107.
  8. Liu H, Du Y, Wang X, Sun L. 2004. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 95: 147-155. https://doi.org/10.1016/j.ijfoodmicro.2004.01.022
  9. Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Meng XH, et al. 2006. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 64: 60-65. https://doi.org/10.1016/j.carbpol.2005.10.028
  10. Liu Y, Wang L, Zhou X, Hu S, Zhang S, Wu H. 2011. Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. Int. J. Antimicrob. Agents 37: 33-38. https://doi.org/10.1016/j.ijantimicag.2010.08.014
  11. Marsh PD. 2003. Are dental diseases examples of ecological catastrophes? Microbiology 149: 279-294. https://doi.org/10.1099/mic.0.26082-0
  12. Merrifield EL, Mitchell SA, Ubach J, Boman HG, Andreu D, Merrifield RB. 1995. D-Enantiomers of 15-residue cecropin A-melittin hybrids. Int. J. Pept. Protein Res. 46: 214-220.
  13. Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R. 2002. Mode of membrane interaction and structure in micelles of a short a-helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur. J. Biochem. 269: 3869-3880. https://doi.org/10.1046/j.1432-1033.2002.03080.x
  14. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, et al. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183: 3770-3783. https://doi.org/10.1128/JB.183.12.3770-3783.2001
  15. Petersen PE. 2003. The World Oral Health Report 2003: continuous improvement of oral health in the 21st century - the approach of the WHO Global Oral Health Programme. Community Dent. Oral. Epidemiol. 31: 3-24. https://doi.org/10.1046/j..2003.com122.x
  16. Raj PA, Antonyraj KJ, Karunakaran T. 2000. Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem. J. 347: 633-641. https://doi.org/10.1042/0264-6021:3470633
  17. Russell RR. 2008. How has genomics altered our view of caries microbiology? Caries Res. 42: 319-327. https://doi.org/10.1159/000151326
  18. Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M. 2004. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 38: 428-432. https://doi.org/10.1111/j.1472-765X.2004.01513.x
  19. Wei GX, Campagna AN, Bobek LA. 2006. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J. Antimicrob. Chemother. 57: 1100-1109. https://doi.org/10.1093/jac/dkl120
  20. Wilson M. 1996. Susceptibility of oral bacterial biofilms to antimicrobial agents. J. Med. Microbiol. 44: 79-87. https://doi.org/10.1099/00222615-44-2-79
  21. Wu JM, Wei SY, Chen HL, Weng KY, Cheng HT, Cheng JW. 2007. Solution structure of a novel D-$\beta$-naphthylalanine substituted peptide with potential antibacterial and antifungal activities. Peptide Sci. 88: 738-745. https://doi.org/10.1002/bip.20736
  22. Yeaman MR, Nannette YY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
  23. Yu HY, Tu CH, Yip BS, Chen HL, Cheng HT, Huang KC, et al. 2011. Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob. Agents Chemother. 55: 4918-4921. https://doi.org/10.1128/AAC.00202-11
  24. Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. https://doi.org/10.1038/415389a
  25. Wei SY, Wu JM, Kuo YY, Chen HL, Yip BS, Tzeng SR, et al. 2006. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J. Bacteriol. 188: 328-334. https://doi.org/10.1128/JB.188.1.328-334.2006
  26. Wang CW, Yip BS, Cheng HT, Wang AH, Chen HL, Cheng JW, et al. 2009. Increased potency of a novel D-betanaphthylalanine- substituted antimicrobial peptide against fluconazole-resistant fungal pathogens. FEMS Yeast Res. 9: 967-970. https://doi.org/10.1111/j.1567-1364.2009.00531.x

Cited by

  1. The virulence of Streptococcus mutans and the ability to form biofilms vol.33, pp.4, 2013, https://doi.org/10.1007/s10096-013-1993-7
  2. Enhancement of Antibacterial Activity of Short Tryptophan-rich Antimicrobial Peptide Pac-525 by Replacing Trp with His(chx) vol.35, pp.9, 2013, https://doi.org/10.5012/bkcs.2014.35.9.2818
  3. High In Vitro Antibacterial Activity of Pac-525 against Porphyromonas gingivalis Biofilms Cultured on Titanium vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/909870
  4. Antimicrobial Peptide-Polymer Conjugates for Dentistry vol.2, pp.3, 2013, https://doi.org/10.1021/acsapm.9b00921
  5. Temporin-Like Peptides Show Antimicrobial and Anti-Biofilm Activities against Streptococcus mutans with Reduced Hemolysis vol.25, pp.23, 2020, https://doi.org/10.3390/molecules25235724
  6. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review vol.122, pp.None, 2013, https://doi.org/10.1016/j.archoralbio.2020.105022