DOI QR코드

DOI QR Code

Production of Chlorphenesin Galactoside by Whole Cells of ${\beta}$-Galactosidase-Containing Escherichia coli

  • Lee, Sang-Eun (Department of Biotechnology, Korea National University of Transportation) ;
  • Lee, Hyang-Yeol (Department of Biotechnology, Korea National University of Transportation) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
  • Received : 2012.11.05
  • Accepted : 2013.02.12
  • Published : 2013.06.28

Abstract

We investigated the transgalactosylation reaction of chlorphenesin (CPN) using ${\beta}$-galactosidase (${\beta}$-gal)-containing Escherichia coli (E. coli) cells, in which galactose from lactose was transferred to CPN. The optimal CPN concentration for CPN galactoside (CPN-G) synthesis was observed at 40 mM under the conditions that lactose and ${\beta}$-gal (as E. coli cells) were 400 g/l and 4.8 U/ml, respectively, and the pH and temperature were 7.0 and $40^{\circ}C$, respectively. The time-course profile of CPN-G synthesis under these optimal conditions showed that CPN-G synthesis from 40 mM CPN reached a maximum of about 27 mM at 12 h. This value corresponded to an about 67% conversion of CPN to CPN-G, which was 4.47-5.36-fold higher than values in previous reports. In addition, we demonstrated by thin-layer chromatography to detect the sugar moiety that galactose was mainly transferred from lactose to CPN. Liquid chromatography-mass spectrometry revealed that CPN-G and CPN-GG (CPN galactoside, which accepted two galactose molecules) were definitively identified as the synthesized products using ${\beta}$-gal-containing E. coli cells. In particular, because we did not use purified ${\beta}$-gal, our ${\beta}$-gal-containing E. coli cells might be practical and cost-effective for enzymatically synthesizing CPN-G. It is expected that the use of ${\beta}$-gal-containing E. coli will be extended to galactose derivatization of other drugs to improve their functionality.

Keywords

References

  1. Bridiau, N., S. Taboubi, N. Marzouki, M. D. Legoy, and T. Maugard. 2006. $\beta$-Galactosidase catalyzed selective galactosylation of aromatic compounds. Biotechnol. Prog. 22: 326-330. https://doi.org/10.1021/bp050230n
  2. Curcio, A., O. Sasso, D. Melisi, M. Nieddu, G. L. Rana, R. Russo, et al. 2009. Galactosyl prodrug of ketorolac: Synthesis, stability, and pharmacological and pharmacokinetic evaluations. J. Med. Chem. 52: 3794-3800. https://doi.org/10.1021/jm900051r
  3. Devalapally, H., K. S. Rajan, R. R. Akkinepally, and R. K. Devarakonda. 2008. Safety, pharmacokinetics and biodistribution studies of a $\beta$-galactoside prodrug of doxorubicin for improvement of tumor selective chemotherapy. Drug Dev. Ind. Pharm. 34: 789-795. https://doi.org/10.1080/03639040701744202
  4. Gänzle, M. G. 2012. Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose. Int. Dairy J. 22: 116-122. https://doi.org/10.1016/j.idairyj.2011.06.010
  5. Harju, M., H. Kallioinen, and O. Tossavainen. 2012. Lactose hydrolysis and other conversions in dairy products: Technological aspects. Int. Dairy J. 22: 104-109. https://doi.org/10.1016/j.idairyj.2011.09.011
  6. Jung, K.-H. 2008. Enhanced enzyme activities of inclusion bodies of recombinant $\beta$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434-442.
  7. Jung, K.-H., J.-H. Yeon, S.-K. Moon, and J. H. Choi. 2008. Methyl $\alpha$-D-glucopyranoside enhances the enzymatic activity of recombinant $\beta$-galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. Ind. Microbiol. Biotechnol. 35: 695-701. https://doi.org/10.1007/s10295-008-0329-6
  8. Kwon, S. K., H.-C. Jung, and J.-G. Pan. 2007. Transgalactosylation in a water-solvent biphasic reaction system with $\beta$-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl. Environ. Microbiol. 73: 2251-2256. https://doi.org/10.1128/AEM.01489-06
  9. Kurachi, M. and H. I. Aihara 1984. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats. Jpn. J. Pharmacol. 36: 7-13.
  10. Lee, S.-E., H.-B. Seo, H.-J. Kim, J.-H. Yeon, and K.-H. Jung. 2011. Galactooligosaccharide synthesis by active $\beta$-galactosidase inclusion bodies-containing Escherichia coli cells. J. Microbiol. Biotechnol. 21: 1151-1158. https://doi.org/10.4014/jmb.1105.05021
  11. Lee, S.-E., J.-H. Yeon, and K.-H. Jung. 2012. Long-term repeated-batch operation of immobilized Escherichia coli cells to synthesize galactooligosaccharide. J. Microbiol. Biotechnol. 22: 1480-1487.
  12. Lu, L., X. Xu, G. Gu, L. Jin, M. Xiao, and F. Wang. 2010. Synthesis of novel galactose containing chemicals by $\beta$-galactosidase from Enterobacter cloacae B5. Bioresour. Technol. 101: 6868-6872. https://doi.org/10.1016/j.biortech.2010.03.106
  13. Melisi, D., A. Curcio, E. Luongo, E. Morelli, and M. G. Rimoli. 2011. D-Galactose as a vector for prodrug design. Curr. Top. Med. Chem. 11: 2288-2298. https://doi.org/10.2174/156802611797183258
  14. Moil, T., S. Fujita, and Y. Okahata. 1997. Transglycosylation in a two-phase aqueous-organic system with catalysis by a lipidcoated $\beta$-D-galactosidase. Carbohydr. Res. 298: 65-73. https://doi.org/10.1016/S0008-6215(96)00298-4
  15. Oh, T.-J., D. H. Kim, S. Y. Kang, T. Yamaguchi, and J. K. Sohng. 2011. Enzymatic synthesis of vancomycin derivatives using galactosyltransferase and sialyltransferase. J. Antibiot. 64: 103-109. https://doi.org/10.1038/ja.2010.131
  16. Quan, J., J.-M. Xu, B.-K. Liu, C.-Z. Zheng, and X.-F. Lin. 2007. Synthesis and characterization of drug-saccharide conjugates by enzymatic strategy in organic media. Enzyme Microb. Technol. 41: 756-763. https://doi.org/10.1016/j.enzmictec.2007.06.009
  17. Scheckermann, C., F. Wagner, and L. Fischer. 1997. Galactosylation of antibiotics using the $\beta$-galactosidase from Aspergillus oryae. Enzyme Microb. Technol. 20: 629-634. https://doi.org/10.1016/S0141-0229(96)00211-6
  18. Shimizu, R., H. Shimabayashi, and M. Moriwaki. 2006. Enzymatic production of highly soluble myricitrin glycosides using $\beta$-galactosidase. Biosci. Biotechnol. Biochem. 70: 940-948. https://doi.org/10.1271/bbb.70.940
  19. Yazar, K., S. Johnsson, M.-L. Lind, A. Boman, and C. Liden. 2011. Preservatives and fragrances in selected consumeravailable cosmetics and detergents. Contact Dermatitis 64: 265-272. https://doi.org/10.1111/j.1600-0536.2010.01828.x
  20. Yeon, J.-H. and K.-H. Jung. 2010. Operation of packed-bed immobilized cell reactor featuring active $\beta$-galactosidase inclusion body-containing recombinant Escherichia coli cells. Biotechnol. Bioprocess Eng. 15: 822-829. https://doi.org/10.1007/s12257-010-0034-y
  21. Yeon, J.-H. and K.-H. Jung. 2011. Repeated-batch operation of immobilized $\beta$-galactosidase inclusion bodies-containing Escherichia coli cell reactor for lactose hydrolysis. J. Microbiol. Biotechnol. 21: 972-978. https://doi.org/10.4014/jmb.1104.04029

Cited by

  1. Enzymatic Synthesis of 2-Phenoxyethanol Galactoside by Whole Cells of ${\beta}$-Galactosidase-Containing Escherichia coli vol.24, pp.9, 2013, https://doi.org/10.4014/jmb.1404.04004
  2. Escherichia coli β-galactosidase-catalyzed synthesis of 2-phenoxyethanol galactoside and its characterization vol.38, pp.2, 2013, https://doi.org/10.1007/s00449-014-1276-4
  3. 빈카 마이너 추출물의 항균 및 면역활성 연구 vol.32, pp.1, 2013, https://doi.org/10.12925/jkocs.2015.32.1.108
  4. 빈카 마이너 추출물에 함유된 알칼로이드들의 분광학적 분석 및 항산화 효능 연구 vol.32, pp.1, 2013, https://doi.org/10.12925/jkocs.2015.32.1.16
  5. The whole-cell immobilization of d-hydantoinase-engineered Escherichia coli for d-CpHPG biosynthesis vol.21, pp.None, 2013, https://doi.org/10.1016/j.ejbt.2016.01.004
  6. 대장균 베타-갈락토시데이즈를 이용하여 합성된 1, 2-Hexanediol Galactoside의 NMR Spectroscopy 및 Mass spectrometry vol.33, pp.2, 2016, https://doi.org/10.12925/jkocs.2016.33.2.286
  7. 대장균 β-Galactosidse를 이용한 1, 2-Hexanediol galactoside의 합성과 Ethyl Acetate 추출 및 Silica Gel Chromatography를이용한 정제 vol.33, pp.3, 2013, https://doi.org/10.12925/jkocs.2016.33.3.498
  8. Biological Effects of Vinca minor extract; Tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity in keratinocytes vol.33, pp.4, 2016, https://doi.org/10.12925/jkocs.2016.33.4.788
  9. Solvent Extraction과 Gel Chromatography를 이용한 Phenoxyethanol Galactoside와 Chlorphenesin Galactoside의 정제 vol.34, pp.4, 2013, https://doi.org/10.12925/jkocs.2017.34.4.954
  10. 베타-갈락토시데이즈를 이용하여 합성한 1, 2-Hexanediol Galactoside의 보습력과 항균력에 대한 연구 vol.43, pp.4, 2013, https://doi.org/10.15230/scsk.2017.43.4.373
  11. 셀룰로오즈 첨가에 따른 미용용 하이드로겔의 물성 연구 vol.35, pp.3, 2013, https://doi.org/10.12925/jkocs.2018.35.3.702
  12. 베타-갈락토시데이즈를 이용하여 합성된 Benzyl Alcohol Galactoside의 NMR Spectroscopy 및 Mass spectrometry vol.36, pp.1, 2019, https://doi.org/10.12925/jkocs.2019.36.1.84
  13. 대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry vol.37, pp.5, 2020, https://doi.org/10.12925/jkocs.2020.37.5.1323
  14. 대장균 베타-갈락토시데이즈를 이용한 Phenylethanol Galactoside 합성 조건의 최적화 vol.38, pp.1, 2013, https://doi.org/10.12925/jkocs.2021.38.1.99
  15. 1, 2-Octanediol과 1, 2-Octanediol Galactoside의 항균력 및 세포독성 비교연구 vol.38, pp.3, 2013, https://doi.org/10.12925/jkocs.2021.38.3.629
  16. Mass spectrometry와 NMR Spectroscopy를 이용한 1, 2-Octanediol Galactoside의 효소합성 확인 vol.38, pp.3, 2013, https://doi.org/10.12925/jkocs.2021.38.3.824