DOI QR코드

DOI QR Code

Chemogenomics Profiling of Drug Targets of Peptidoglycan Biosynthesis Pathway in Leptospira interrogans by Virtual Screening Approaches

  • Received : 2012.06.21
  • Accepted : 2013.02.13
  • Published : 2013.06.28

Abstract

Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an anti-leptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.

Keywords

References

  1. Amineni, U., D. Pradhan, and H. Marisetty. 2010. In silico identification of common putative drug targets in Leptospira interrogans. J. Chem. Biol. 14: 165-173.
  2. Amineni, U., D. Pradhan, and H. Marisetty. 2010. Virtual screening for potential inhibitors of homology modeled Leptospira interrogans MurD ligase. J. Chem. Biol. 3: 3175-3187.
  3. Barreteau, H., A. Kovac, A. Boniface, M. Sova, S. Gobec, and D. Blanot. 2008. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32: 168-207. https://doi.org/10.1111/j.1574-6976.2008.00104.x
  4. Bharti, A. R., J. E. Nally, J. N. Ricaldi, M. A. Matthias, M. M. Diaz, M. A. Lovett, et al. 2003. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis. 3: 757-771. https://doi.org/10.1016/S1473-3099(03)00830-2
  5. Bleicher, K. H. 2002. Chemogenomics: Bridging a drug discovery gap. Curr. Med. Chem. 9: 2077-2084 https://doi.org/10.2174/0929867023368728
  6. Chopra, I., C. Schofield, M. Everett, A. O'Neill, K. Miller, M. Wilcox, et al. 2008. Treatment of health-care-associated infections caused by Gram-negative bacteria: A consensus statement. Lancet Infect. Dis. 8: 133-139. https://doi.org/10.1016/S1473-3099(08)70018-5
  7. Colovos, C. and T. O. Yeates. 1993. Verification of protein structures: Patterns of non bonded atomic interactions. Protein Sci. 2: 1511-1519. https://doi.org/10.1002/pro.5560020916
  8. Gupta, S. K., M. Smurzynski, N. Franceschini, R. J. Bosch, L. A. Szczech, and R. C. Kalayjian. 2009. AIDS clinical trials group longitudinal linked randomized trials study team. The effects of HIV type-1 viral suppression and non-viral factors on quantitative proteinuria in the highly active antiretroviral therapy era. Antivir. Ther. 14: 543-549.
  9. Hooft, R. W., G. Vriend, C. Sander, and E. E. Abola. 1996. Errors in protein structures. Nature. 381: 272. https://doi.org/10.1038/381272e0
  10. Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1: 27-30.
  11. Kelley, L. A. and M. J. Sternberg. 2009. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc. 4: 363-371. https://doi.org/10.1038/nprot.2009.2
  12. Laskowski, R. A., J. A. Rullmannn, M. W. Macarthur, R. Kaptein, and J. M. Hornton. 1996. AQUA and PROCHECKNMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8: 477-486.
  13. Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791. https://doi.org/10.1002/jcc.21256
  14. Trueba, G., S. Zapata, K. Madrid, P. Cullen, and D. Haake. 2004. Cell aggregation: A mechanism of pathogenic Leptospira to survive in fresh water. Int. Microbiol. 7: 35-40.
  15. Van Heijenoort, J. 2001. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18: 503-519. https://doi.org/10.1039/a804532a
  16. Vollmer, W., D. Blanot, and M. A. De Pedro. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32: 149-167. https://doi.org/10.1111/j.1574-6976.2007.00094.x
  17. Wang, Z., L. Jin, and A. Wegrzyn. 2007. Leptospirosis vaccines. Microb. Cell Fact. 11: 6-39.
  18. Wiederstein, M. and M. J. Sippl, 2007. ProSA-Web: Interactive Web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35 (Web Server issue): W407-10
  19. Sarangi, A. N., R. Aggarwal., Q. Rahman, and N. Trivedi. 2009. Subtractive genomics approach for in silico identification and characterization of novel drug targets in neisseria Meningitides serogroup B. J. Comp. Sci. Syst. Biol. 2: 255-258. https://doi.org/10.4172/jcsb.1000038
  20. Smith, C. A. 2006. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J. Mol. Biol. 362: 640-655. https://doi.org/10.1016/j.jmb.2006.07.066

Cited by

  1. A two-component signal transduction system contributes to the virulence of Riemerella anatipestifer vol.19, pp.2, 2013, https://doi.org/10.4142/jvs.2018.19.2.260