References
- Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
- Bäuerlein, E. 2003. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. 42: 614-641. https://doi.org/10.1002/anie.200390176
- Braissant, O., G. Cailleau, C. Dupraz, and E. P. Verrecchia. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acid. J. Sed. Res. 72: 485-490.
- Castanier, S., G. Le Metayer-Levrel, and J. P. Perthuisot. 1999. Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sediment. Geol. 126: 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
- Castanier, S., G. Le Metayer-Levrel, and J. P. Perthuisot. 2000. Bacterial roles in the precipitation of carbonate minerals, pp. 32-39. In R. E. Riding and S. M. Awramik (eds.). Microbial Sediments. Springer-Verlag, Heidelberg.
- De Yoreo, J. J. and P. M. Dove. 2004. Shaping crystals with biomolecules. Science 306: 1301-1302. https://doi.org/10.1126/science.1100889
- Dhami, N. K., A. Mukherjee, and M. S. Reddy. 2012. Improvement in strength properties of ash bricks by bacterial calcite. Ecol. Eng. 39: 31-35. https://doi.org/10.1016/j.ecoleng.2011.11.011
- Dhami, N. K., A. Mukherjee, and M. S. Reddy. 2012. Biofilm and Microbial Applications in Biomineralized concrete, pp. 137-164. In Jong Seto (ed.). Advanced Topics in Biomineralization. InTech.
- Ercole, C., P. Bozzelli, F. Altieri, P. Cacchio, and M. D. Gallo. 2012. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc. Microanal. 18: 829-839. https://doi.org/10.1017/S1431927612000426
- Ercole, C., P. Cacchio, A. L. Botta, V. Centi, and A. Lepidi. 2007. Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides. Microsc. Microanal. 13: 42-50. https://doi.org/10.1017/S1431927607070122
- Friedman, L. E., B. N. de Passerini Rossi, M. T. Messina, and M. A. Franco. 2001. Phenotype evaluation of Bordetella bronchiseptica cultures by urease activity and Congo red affinity. Lett. Appl. Microbiol. 33: 285-290. https://doi.org/10.1046/j.1472-765X.2001.00997.x
- Hammes, F., N. Boon, J. De Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
- Holt, J. G., N. R. Krieg, P. H. A Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th Ed. Williams and Wilkins, Baltimore.
- Karn, K. S., S. K. Chakrabarty, and M. S. Reddy. 2010. Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp and paper industry sludge. Int. Biodeter. Biodegrad. 64: 609-613. https://doi.org/10.1016/j.ibiod.2010.05.017
-
Kawaguchi, T. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretion (EPS) in influencing
$CaCO_3$ polymorphism. J. Cryst. Growth 240: 230-235. https://doi.org/10.1016/S0022-0248(02)00918-1 - Lian, B., Q. Hu, J. Chen, J. Ji, and H. H. Teng. 2006. Carbonate biomineralization by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 70: 5522-5535. https://doi.org/10.1016/j.gca.2006.08.044
- Mann, S. 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford.
- Meldrum, F. and H. Colfen. 2008. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108: 4332-4432. https://doi.org/10.1021/cr8002856
- Merz-Preiss, M. and R. Riding. 1999. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes. Sediment Geol. 126: 103-124. https://doi.org/10.1016/S0037-0738(99)00035-4
- Mitchell, A. C., K. Dideriksen, L. H. Spangler, A. B. Cunningham, and R. Gerlach. 2010. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 44: 5270-5276. https://doi.org/10.1021/es903270w
- Morikawa, M., S. Kagihiro, M. Haruki, K. Takano, S. Branda, R. Kotler, and S. Kanaya. 2006. Biofilm formation by a Bacillus subtilis strain that produces polyglutamate. Microbiology 152: 2801-2807. https://doi.org/10.1099/mic.0.29060-0
- Park, I. S. and R. P. Hausinger. 1995. Requirement of carbon dioxide for in vitro assembly of urease nickel metallocenter. Science 267: 1156-1158. https://doi.org/10.1126/science.7855593
- Qian, C., R. Wang, L. Cheng, and J. Wang. 2010. Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin. J. Chem. 28: 847-857. https://doi.org/10.1002/cjoc.201090156
- Rivadeneyra, M. A., G., Delgado, A. Ramos-Cormenzana, and R. Delgado. 1998. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: Crystal formation sequence. Res. Microbiol. 149: 277-287. https://doi.org/10.1016/S0923-2508(98)80303-3
- Rodriguez-Navarro, C., C. Jimenez-Lopez, A. Rodriguez-Navarro, M. T Gonzalez-Munoz, and M. Rodriguez-Gallego. 2007. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 71: 1197-1213. https://doi.org/10.1016/j.gca.2006.11.031
- Smith, K. S. and J. G. Ferry. 1999. A plant type (L class) carbonic anhydrase from the thermophilic methanoarchaeon Methanobacteium thermoautotrophicum. J. Bacteriol. 181: 6247-6253.
- Sondi, I. and E. Matijevic. 2001. Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction. J. Colloid Interface Sci. 238: 208-214. https://doi.org/10.1006/jcis.2001.7516
- Stahler, M. F., L. Ganter, L. Katherin, K. Manfred, and B. Stephen. 2005. Mutational analysis of Helicobacter pylori carbonic anhydrases. FEMS Immunol. Med. Microbiol. 44: 183-189. https://doi.org/10.1016/j.femsim.2004.10.021
-
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of
$CaCO_3$ . Soil Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 - Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
-
Tourney, J. and B. T. Ngwenya. 2009. Bacterial extracellular polymeric substances (EPS) mediate
$CaCO_3$ morphology and polymorph. Chem. Geol. 262: 138-146. https://doi.org/10.1016/j.chemgeo.2009.01.006 - Tsuneda, S., J. Jung, H. Hayashi, H. Aikawa, A. Hirata, and H. Sasaki. 2003. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloids Surf. B 29: 181-188. https://doi.org/10.1016/S0927-7765(02)00188-1
- Warren, L. A., P. A. Maurice, N. Parmar, and F. G. Ferris. 2001. Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol. J. 18: 93-115. https://doi.org/10.1080/01490450151079833
Cited by
- Biomineralization of calcium carbonates and their engineered applications: a review vol.4, pp.None, 2013, https://doi.org/10.3389/fmicb.2013.00314
- Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials vol.29, pp.12, 2013, https://doi.org/10.1007/s11274-013-1408-z
- Viability of calcifying bacterial formulations in fly ash for applications in building materials vol.40, pp.12, 2013, https://doi.org/10.1007/s10295-013-1338-7
- Synergistic Role of Bacterial Urease and Carbonic Anhydrase in Carbonate Mineralization vol.172, pp.5, 2013, https://doi.org/10.1007/s12010-013-0694-0
- A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions vol.12, pp.6, 2014, https://doi.org/10.1111/gbi.12102
- Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation vol.31, pp.12, 2013, https://doi.org/10.1007/s11274-015-1948-5
- Metagenomic Analysis Suggests Modern Freshwater Microbialites Harbor a Distinct Core Microbial Community vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.01531
- Influence of Exopolymeric Materials on Bacterially Induced Mineralization of Carbonates vol.175, pp.7, 2013, https://doi.org/10.1007/s12010-015-1524-3
- Bacillus cereus in personal care products: risk to consumers vol.37, pp.2, 2015, https://doi.org/10.1111/ics.12191
- Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment vol.43, pp.11, 2013, https://doi.org/10.1007/s10295-016-1835-6
- Soil Bioconsolidation Through Microbially Induced Calcite Precipitation by Lysinibacillus sphaericus WJ-8 vol.33, pp.6, 2013, https://doi.org/10.1080/01490451.2015.1053581
- Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete vol.26, pp.3, 2013, https://doi.org/10.4014/jmb.1511.11008
- Potential use of carbonatogenic bacteria in monuments biorestoration vol.33, pp.3, 2013, https://doi.org/10.1016/j.nbt.2015.10.046
- Applicability of bacterial biocementation in sustainable construction materials vol.11, pp.5, 2016, https://doi.org/10.1002/apj.2014
- Formations of calcium carbonate minerals by bacteria and its multiple applications vol.5, pp.1, 2013, https://doi.org/10.1186/s40064-016-1869-2
- Isolation of Leclercia adcarboxglata Strain JLS1 from Dolostone Sample and Characterization of its Induced Struvite Minerals vol.34, pp.6, 2017, https://doi.org/10.1080/01490451.2016.1222469
- Diversity and Biomineralization Potential of the Epilithic Bacterial Communities Inhabiting the Oldest Public Stone Monument of Cluj-Napoca (Transylvania, Romania) vol.8, pp.None, 2013, https://doi.org/10.3389/fmicb.2017.00372
- Bacterial Community Dynamics and Biocement Formation during Stimulation and Augmentation: Implications for Soil Consolidation vol.8, pp.None, 2013, https://doi.org/10.3389/fmicb.2017.01267
- The influence of human exploration on the microbial community structure and ammonia oxidizing potential of the Su Bentu limestone cave in Sardinia, Italy vol.12, pp.7, 2013, https://doi.org/10.1371/journal.pone.0180700
- Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete vol.34, pp.11, 2018, https://doi.org/10.1007/s11274-018-2552-2
- Calcite-forming Bacillus licheniformis Thriving on Underwater Speleothems of a Hydrothermal Cave vol.35, pp.9, 2013, https://doi.org/10.1080/01490451.2018.1476626
- Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.00040
- Novel Mechanism for Surface Layer Shedding and Regenerating in Bacteria Exposed to Metal-Contaminated Conditions vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.03210
- A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes vol.67, pp.1, 2013, https://doi.org/10.5604/01.3001.0011.6144
- An XRPD and EPR spectroscopy study of microcrystalline calcite bioprecipitated by Bacillus subtilis vol.45, pp.10, 2013, https://doi.org/10.1007/s00269-018-0974-x
- Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: Further insights into biotic and abiotic calcite vol.500, pp.None, 2013, https://doi.org/10.1016/j.chemgeo.2018.09.018
- Factors affecting the bio-cementing process of coarse sand vol.172, pp.1, 2019, https://doi.org/10.1680/jgrim.17.00039
- Biosequestration of heavy metals by microbially induced calcite precipitation of ureolytic bacteria vol.24, pp.1, 2013, https://doi.org/10.25083/rbl/24.1/147.153
- An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal vol.21, pp.2, 2013, https://doi.org/10.1007/s10163-018-0779-5
- Biocalcification by Piezotolerant Bacillus sp. NIOTVJ5 Isolated from Deep Sea Sediment and its Influence on the Strength of Concrete Specimens vol.21, pp.2, 2019, https://doi.org/10.1007/s10126-018-9867-8
- Metal and metalloid immobilization by microbiologically induced carbonates precipitation vol.35, pp.4, 2019, https://doi.org/10.1007/s11274-019-2626-9
- Identification of Ureolytic Bacteria for Concrete Formation and Antifungal Activity from the Soil with Long-Term Application of Urea Fertilizer vol.252, pp.None, 2013, https://doi.org/10.1088/1755-1315/252/5/052131
- Factors affecting the urease activity of native ureolytic bacteria isolated from coastal areas vol.17, pp.5, 2013, https://doi.org/10.12989/gae.2019.17.5.421
- Calcite formation induced by Ensifer adhaerens, Microbacterium testaceum, Paeniglutamicibacter kerguelensis, Pseudomonas protegens and Rheinheimera texasensis vol.112, pp.5, 2013, https://doi.org/10.1007/s10482-018-1204-8
- Controlling the Distribution of Microbially Precipitated Calcium Carbonate in Radial Flow Environments vol.53, pp.10, 2013, https://doi.org/10.1021/acs.est.8b06876
- Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world vol.103, pp.12, 2013, https://doi.org/10.1007/s00253-019-09861-5
- Unconfined Compressive Strength and Visualization of the Microstructure of Coarse Sand Subjected to Different Biocementation Levels vol.145, pp.8, 2013, https://doi.org/10.1061/(asce)gt.1943-5606.0002066
- Effect of Calcium Organic Additives on the Self-Healing of Concrete Microcracks in the Presence of a New Isolate Bacillus sp. BY1 vol.31, pp.10, 2013, https://doi.org/10.1061/(asce)mt.1943-5533.0002711
- Effects of different calcium sources on the mineralization and sand curing of CaCO3 by carbonic anhydrase-producing bacteria vol.9, pp.70, 2013, https://doi.org/10.1039/c9ra09025h
- Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review vol.79, pp.5, 2020, https://doi.org/10.1007/s12665-020-8840-9
- Analysis and optimization of process parameters for in vitro biomineralization of CaCO3 by Klebsiella pneumoniae, isolated from a stalactite from the Sahastradhara cave vol.10, pp.14, 2020, https://doi.org/10.1039/d0ra00090f
- Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils vol.20, pp.1, 2013, https://doi.org/10.1007/s42729-019-00121-z
- Understanding and creating biocementing beachrocks via biostimulation of indigenous microbial communities vol.104, pp.8, 2013, https://doi.org/10.1007/s00253-020-10474-6
- Isolation and Identification of Local Bactria Produced from Soil-Borne Urease vol.901, pp.None, 2013, https://doi.org/10.1088/1757-899x/901/1/012035
- Carbonate and Oxalate Crystallization by Interaction of Calcite Marble with Bacillus subtilis and Bacillus subtilis-Aspergillus niger Association vol.10, pp.9, 2020, https://doi.org/10.3390/cryst10090756
- Scalable Chemical Synthesis Route to Manufacture pH-Responsive Janus CaCO3 Micromotors vol.36, pp.42, 2013, https://doi.org/10.1021/acs.langmuir.0c02148
- Microbiologically Induced Carbonate Precipitation in the Restoration and Conservation of Cultural Heritage Materials vol.25, pp.23, 2013, https://doi.org/10.3390/molecules25235499
- Research Progress and Application of Biomineralization vol.10, pp.4, 2013, https://doi.org/10.12677/amb.2021.104022
- Microbial-Induced Carbonate Precipitation: A Review on Influencing Factors and Applications vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/9974027
- Isolation, identification and growth conditions of calcite producing bacteria from urea-rich soil vol.15, pp.1, 2013, https://doi.org/10.5897/ajmr2020.9445
- Gypsum Amendment Induced Rapid Pyritization in Fe-Rich Mine Tailings from Doce River Estuary after the Fundão Dam Collapse vol.11, pp.2, 2013, https://doi.org/10.3390/min11020201
- Ammonium monoethyloxalate (AmEtOx): a new agent for the conservation of carbonate stone substrates vol.45, pp.12, 2021, https://doi.org/10.1039/d0nj06001a
- Utilization of Biomineralized Steel Slag in Cement Mortar to Improve Its Properties vol.33, pp.6, 2021, https://doi.org/10.1061/(asce)mt.1943-5533.0003749
- Bioconservation of Historic Stone Buildings-An Updated Review vol.11, pp.12, 2013, https://doi.org/10.3390/app11125695
- Influence of the Grouting Parameters on Microbially Induced Carbonate Precipitation for Soil Stabilization vol.38, pp.9, 2013, https://doi.org/10.1080/01490451.2021.1946623
- Calcite and Vaterite Biosynthesis by Nitrate Dissimilating Bacteria in Carbonatogenesis Process under Aerobic and Anaerobic Conditions vol.38, pp.9, 2021, https://doi.org/10.1080/01490451.2021.1951398
- Profiling of Bacteria Capable of Precipitating CaCO3 on the Speleothem Surfaces in Dupnisa Cave, Kırklareli, Turkey vol.38, pp.9, 2013, https://doi.org/10.1080/01490451.2021.1964110
- Improving the Strength and Leaching Characteristics of Pb-Contaminated Silt through MICP vol.11, pp.11, 2013, https://doi.org/10.3390/cryst11111303
- Bio-composites treatment for mitigation of current-induced riverbank soil erosion vol.800, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2021.149513
- Investigation on the Impact of Cementation Media Concentration on Properties of Biocement under Stimulation and Augmentation Approaches vol.26, pp.1, 2013, https://doi.org/10.1061/(asce)hz.2153-5515.0000662
- Microbial Depolymerization of Epoxy Resins: A Novel Approach to a Complex Challenge vol.12, pp.1, 2013, https://doi.org/10.3390/app12010466