DOI QR코드

DOI QR Code

Effect of Mild-Thiol Reducing Agents and ${\alpha}2,3$-Sialyltransferase Expression on Secretion and Sialylation of Recombinant EPO in CHO Cells

  • Chang, Kern Hee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Jeong, Yeon Tae (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kwak, Chan Yeong (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Choi, One (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jung Hoe (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2013.03.13
  • Accepted : 2013.03.14
  • Published : 2013.05.28

Abstract

We have previously reported that N-acetylcysteine (NAC) not only delayed apoptosis but also enhanced the production of recombinant erythropoietin (EPO) in Chinese hamster ovary (CHO) cell culture. To investigate the production enhancement mechanism, the effects of similar thiol-reducing agents were studied. Intriguingly, all mild reducing agents examined including mercaptoethanesulfonic acid (MESNA), thiolactic acid (TLA), and thioglycolate (TG) were shown to block apoptosis and increase EPO production. A pulse-chase study of EPO secretion revealed that all four thiol-reducing agents increased the EPO secretion rate; among them TLA showed the highest rate. In terms of product quality, the sialic acid content of the glycoprotein is one of the most important factors. It was reported that a number of glycoproteins produced by CHO cells often have incomplete sialylation, particularly under high-producing conditions. Human ${\alpha}2,3$-sialyltransferase (${\alpha}2,3$-ST) was introduced into EPO-producing CHO cells in order to compensate for the reduced sialylation during supplementation with NAC. When ${\alpha}2,3$-ST was expressed in the presence of NAC, reduced sialylation was restored and an even more sialylated EPO was produced. Thus, our study is significant in that it offers increased EPO production while still allowing the prevention of decreased sialylation of EPO.

Keywords

References

  1. Ailor, E., N. Takahashi, Y. Tsukamoto, K. Masuda, B. A. Rahman, D. L. Jarvis, et al. 2000. N-Glycan patterns of human transferrin produced in Trichoplusia ni insect cells: Effects of mammalian galactosyltransferase. Glycobiology 10: 837-847. https://doi.org/10.1093/glycob/10.8.837
  2. Alberini, C. M., P. Bet, C. Milstein, and R. Sitia. 1990. Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature 347: 485-487. https://doi.org/10.1038/347485a0
  3. Arden, N. and M. J. Betenbaugh. 2004. Life and death in mammalian cell culture: Strategies for apoptosis inhibition. Trends Biotechnol. 22: 174-180. https://doi.org/10.1016/j.tibtech.2004.02.004
  4. Bork, D., W. Reutter, W. Weidemann, and R. Horstkorte. 2007. Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett. 581: 4195-4198. https://doi.org/10.1016/j.febslet.2007.07.060
  5. Bragonzi, A., G. Distefano, L. D. Buckberry, G. Acerbis, C. Foglieni, D. Lamotte, et al. 2000. A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as a universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta 1474: 273-282. https://doi.org/10.1016/S0304-4165(00)00023-4
  6. Chang, K. H., K. S. Kim, and J. H. Kim. 1999. N-Acetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Radic. Res. 30: 85-91. https://doi.org/10.1080/10715769900300091
  7. Choi, O., N. Tomiya, J. H. Kim, J. M. Slavicek, M. J. Betenbaugh, and Y. C. Lee. 2003. N-Glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system. Glycobiology 13: 539-548. https://doi.org/10.1093/glycob/cwg071
  8. Chung, B. S., Y. T. Jeong, K. H. Chang, J. Kim, and J. H. Kim. 2001. Effect of sodium butyrate on glycosylation of recombinant erythropoietin. J. Microbiol. Biotechnol. 11: 1087-1092.
  9. Dordal, M. S., F. F. Wang, and E. Goldwasser. 1985. The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293-2299. https://doi.org/10.1210/endo-116-6-2293
  10. Ferrari, G., C. Y. Yan, and L. A. Greene. 1995. N-Acetylcysteine (D- and L-steroisomers) prevents apoptotic death of neuronal cells. J. Neurosci. 15: 2857-2866.
  11. Fukuta, K., T. Yokomatsu, R. Abe, M. Asanagi, and T. Makino. 2000. Genetic engineering of CHO cells producing human interferon-${\gamma}$ by transfection of sialyltransferases. Glycoconj. J. 17: 895-904. https://doi.org/10.1023/A:1010977431061
  12. Gu, X. and D. I. C. Wang. 1998. Improvement of interferon-${\gamma}$ sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 58: 642-647. https://doi.org/10.1002/(SICI)1097-0290(19980620)58:6<642::AID-BIT10>3.0.CO;2-9
  13. Jassal, R., N. Jenkins, J. Charlwood, P. Camilleri, R. Jefferis, and J. Lund. 2001. Sialylation of human IgG-Fc carbohydrate by transfected rat ${\alpha}2,6$-sialyltransferase. Biochem. Biophys. Res. Commun. 286: 243-249. https://doi.org/10.1006/bbrc.2001.5382
  14. Jeong, Y. T., O. Choi, H. R. Lim, Y. D. Son, H. J. Kim, and J. H. Kim. 2008. Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J. Microbiol. Biotechnol. 18: 1945-1952.
  15. Kaufmann, H., X. Mazur, R. Marone, J. E. Bailey, and M. Fussenegger. 2001. Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline-regulated gene expression, and productivity. Biotechnol. Bioeng. 72: 592-602. https://doi.org/10.1002/1097-0290(20010320)72:6<592::AID-BIT1024>3.0.CO;2-J
  16. Kim, N. S., K. H. Chang, B. S. Chung, S. H. Kim, J. H. Kim, and G. M. Lee. 2003. Characterization of humanized antibody produced by apoptosis-resistant CHO cells under sodium butyrate-induced condition. J. Microbiol. Biotechnol. 13: 926-936.
  17. Lodish, H. F. and N. Kong. 1993. The secretory pathway is normal in dithiothreitol-treated cells, but disulfide-bonded proteins are reduced and reversibly retained in the endoplasmic reticulum. J. Biol. Chem. 268: 20598-20605.
  18. Nakagawa, H., Y. Kawamura, K. Kato, I. Shimada, Y. Arata, and N. Takahashi. 1995. Identification of neutral and sialyl Nlinked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Anal. Biochem. 226: 130-138. https://doi.org/10.1006/abio.1995.1200
  19. Oh, H. K., M. K. So, J. Yang, H. C. Yoon, J. S. Ahn, J. M. Lee, et al. 2005. Effect of N-acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-${\beta}$-1a. Biotechnol. Prog. 21: 1154-1164.
  20. Oster, T., C. Thioudellet, I. Chevalot, C. Masson, M. Wellman, A. Marc, et al. 1993. Induction of recombinant human gammaglutamyl transferase by sodium butyrate in transfected V79 and CHO Chinese hamster cells. Biochem. Biophys. Res. Commun. 193: 406-412. https://doi.org/10.1006/bbrc.1993.1638
  21. Santell, L., T. Ryll, T. Etcheverry, M. Santoris, G. Dutina, A. Wang, et al. 1999. Aberrant metabolic sialylation of recombinant proteins expressed in Chinese hamster ovary cells in high productivity cultures. Biochem. Biophys. Res. Commun. 258: 132-137. https://doi.org/10.1006/bbrc.1999.0550
  22. Son, Y. D., Y. T. Jeong, S. Y. Park, and J. H. Kim. 2011. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology. 21: 1019-1028. https://doi.org/10.1093/glycob/cwr034
  23. Takeuchi, M., S. Takasaki, H. Miyazaki, T. Kato, S. Hoshi, N. Kochibe, et al. 1988. Comparative study of the asparaginelinked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J. Biol. Chem. 263: 3657-3663.
  24. Thorens, B. and P. Vassalli. 1986. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 321: 618-620. https://doi.org/10.1038/321618a0
  25. Troy, C. M., D. Derossi, A. Prochiantz, L. A. Greene, and M. L. Shelanski. 1996. Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J. Neurosci. 16: 253-261.
  26. Weikert, S., D. Papac, J. Briggs, D. Cowfer, S. Tom, M. Gawlitzek, et al. 1999. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17: 1116-1121. https://doi.org/10.1038/15104
  27. Weiss, P. and G. Ashwell. 1989. The asialoglycoprotein receptor: Properties and modulation by ligand. Prog. Clin. Biol. Res. 300: 169-184.
  28. Wong, N. S. C., M. G. S. Yap, and D. I. C. Wang. 2006. Enhancing recombinant glycoprotein sialylation through CMPsialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93: 1005-1016. https://doi.org/10.1002/bit.20815
  29. Yamamoto, S., S. Hase, S. Fukuda, O. Sano, and T. Ikenaka. 1989. Structures of the sugar chains of interferon-gamma produced by human myelomonocyte cell line HBL-38. J. Biochem. 105: 547-555.
  30. Yan, C. Y., G. Ferrari, and L. A. Greene. 1995. N-Acetylcysteinepromoted survival of PC12 cells is glutathione-independent but transcription-dependent. J. Biol. Chem. 270: 26827-26832. https://doi.org/10.1074/jbc.270.45.26827

Cited by

  1. CHO 세포에서 누에 혈림프 유래 Storage-protein 2의 세포응집 및 세포사멸 억제 효과 vol.31, pp.1, 2016, https://doi.org/10.7841/ksbbj.2016.31.1.66
  2. The mechanism of N‐acetyl‐l‐cysteine in improving the secretion of porcine follicle‐stimulating hormone in Pichia pastoris vol.38, pp.11, 2013, https://doi.org/10.1002/yea.3668
  3. Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture vol.54, pp.None, 2013, https://doi.org/10.1016/j.biotechadv.2021.107831