DOI QR코드

DOI QR Code

Effect of Culture Conditions and Signal Peptide on Production of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase in Escherichia coli BL21

  • Hernandez, Alejandra (Department of Chemical Engineering, Universidad de Los Andes) ;
  • Velasquez, Olga (Department of Chemical Engineering, Universidad de Los Andes) ;
  • Leonardi, Felice (Department of Chemical Engineering, Universidad de Los Andes) ;
  • Soto, Carlos (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana) ;
  • Rodriguez, Alexander (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana) ;
  • Lizaraso, Lina (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana) ;
  • Mosquera, Angela (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana) ;
  • Bohorquez, Jorge (Department of Chemical Engineering, Universidad de Los Andes) ;
  • Coronado, Alejandra (Department of Chemical Engineering, Universidad de Los Andes) ;
  • Espejo, Angela (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana) ;
  • Sierra, Rocio (Department of Chemical Engineering, Universidad de Los Andes) ;
  • Sanchez, Oscar F. (Department of Chemical Engineering, Universidad de Los Andes) ;
  • Almeciga-Diaz, Carlos J. (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana) ;
  • Barrera, Luis A. (Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana)
  • Received : 2012.11.19
  • Accepted : 2013.01.14
  • Published : 2013.05.28

Abstract

The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.

Keywords

References

  1. Almeciga-Diaz, C., A. M. Montano, S. Tomatsu, and L. Barrera. 2010. Adeno-associated virus gene transfer on Morquio A: Effect of promoters and sulfatase-modifying factor 1. FEBS J. 277: 3608-3619. https://doi.org/10.1111/j.1742-4658.2010.07769.x
  2. Almeciga-Diaz, C., M. Rueda-Paramo, A. Espejo, O. Echeverri, A. Montano, S. Tomatsu, and L. Barrera. 2009. Effect of elongation factor $1{\alpha}$ promoter and SUMF1 over in-vitro expression of N-acetylgalactosamine-6-sulfate sulfatase. Mol. Biol. Rep. 36: 1863-1870. https://doi.org/10.1007/s11033-008-9392-3
  3. Amersham. 2002. GST Gene Fusion System - Handbook. Amersham Biosciences AB, Uppsala, Sweden.
  4. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1999. Short Protocols in Molecular Biology, 4th Ed. Wiley John & Sons Inc., Hoboken.
  5. Bielicki, J., M. Fuller, X. Guo, C. Morri, J. Hopwood, and D. Anson. 1995. Expression, purification and characterization of recombinant human N-acetylgalactosamine-6-sulphatase. Biochem. J. 311: 333-339.
  6. Carlson, B. L., E. R. Ballister, E. Skordalakes, D. S. King, M. A. Breidenbach, S. A. Gilmore, et al. 2008. Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283: 20117-20125. https://doi.org/10.1074/jbc.M800217200
  7. Chen, R. 2011. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30: 1102-1107.
  8. Cordoba-Ruiz, H. A., R. A. Poutou-Pinales, O. Y. Echeverri-Pena, N. A. Algecira-Enciso, P. Landazuri, H. Saenz, and L. A. Barrera-Avellaneda. 2009. Laboratory scale production of the human recombinant iduronate 2-sulfate sulfatase-like from Pichia pastoris. Afr. J. Biotechnol. 8: 1786-1792.
  9. Cosma, M., P. Pepe, I. Annunziata, R. Newbold, M. Grompe, G. Parenti, and A. Ballabio. 2003. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113: 445-456. https://doi.org/10.1016/S0092-8674(03)00348-9
  10. Dierks, T., B. Schmidt, L. V. Borissenko, J. Peng, A. Preusser, M. Mariappan, and K. von Figura. 2003. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113: 435-444. https://doi.org/10.1016/S0092-8674(03)00347-7
  11. Dierks, T., B. Schmidt, and K. von Figura. 1997. Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94: 11963-11968. https://doi.org/10.1073/pnas.94.22.11963
  12. Dresler, K., J. van den Heuvel, R. J. Muller, and W. D. Deckwer. 2006. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess Biosyst. Eng. 29: 169-183. https://doi.org/10.1007/s00449-006-0069-9
  13. Driessen, A. J. and N. Nouwen. 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77: 643-667. https://doi.org/10.1146/annurev.biochem.77.061606.160747
  14. Dvorak-Ewell, M., D. Wendt, C. Hague, T. Christianson, V. Koppaka, D. Crippen, et al. 2010. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One 5: e12194. https://doi.org/10.1371/journal.pone.0012194
  15. Egea, P. F., R. M. Stroud, and P. Walter. 2005. Targeting proteins to membranes: Structure of the signal recognition particle. Curr. Opin. Struct. Biol. 15: 213-220. https://doi.org/10.1016/j.sbi.2005.03.007
  16. Gatti-Lafranconi, P., A. Natalello, D. Ami, S. M. Doglia, and M. Lotti. 2011. Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J. 278: 2408-2418. https://doi.org/10.1111/j.1742-4658.2011.08163.x
  17. Gutierrez, M., F. Garcia-Vallejo, S. Tomatsu, F. Ceron, C. Almeciga-Diaz, M. Dominguez, and L. Barrera. 2008. Construction of an adenoassociated virus-derived vector for the treatment of Morquio A disease. Biomedica 28: 448-459.
  18. Jana, S. and J. K. Deb. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289-298. https://doi.org/10.1007/s00253-004-1814-0
  19. Jeong, K. J. and S. Y. Lee. 2002. Excretion of human betaendorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl. Environ. Microbiol. 68: 4979-4985. https://doi.org/10.1128/AEM.68.10.4979-4985.2002
  20. Kornfeld, S. 1987. Trafficking of lysosomal enzymes. FASEB J. 1: 462-468.
  21. Lagunas-Munoz, V. H., N. Cabrera-Valladares, F. Bolivar, G. Gosset, and A. Martinez. 2006. Optimum melanin production using recombinant Escherichia coli. J. Appl. Microbiol. 101: 1002-1008. https://doi.org/10.1111/j.1365-2672.2006.03013.x
  22. Landazuri, P., R. A. Poutou-Pinales, J. Acero-Godoy, H. Cordoba-Ruiz, O. Y. Echeverri-Pena, H. Saenz, et al. 2009. Cloning and shake flask expression of hrIDS-like in Pichia pastoris. Afr. J. Biotechnol 8: 2871-2877.
  23. Liu, S. L., K. Du, W. Z. Chen, G. Liu, and M. Xing. 2012. Effective approach to greatly enhancing selective secretion and expression of three cytoplasmic enzymes in Escherichia coli through synergistic effect of EDTA and lysozyme. J. Ind. Microbiol. Biotechnol. 39: 1301-1307. https://doi.org/10.1007/s10295-012-1136-7
  24. Marquordt, C., Q. Fang, E. Will, J. Peng, K. von Figura, and T. Dierks. 2003. Posttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB. J. Biol. Chem. 278: 2212-2218. https://doi.org/10.1074/jbc.M209435200
  25. Montano, A. M., S. Tomatsu, G. Gottesman, M. Smith, and T. Orii. 2007. International Morquio A registry: Clinical manifestation and natural course of Morquio A disease. J. Inherit. Metab. Dis. 30: 165-174. https://doi.org/10.1007/s10545-007-0529-7
  26. Mosquera, A., A. Rodríguez, C. Vargas, F. Leonardi, A. Espejo, O. Sanchez, et al. 2012. Characterization of a recombinant Nacetylgalactosamine-6-sulfate sulfatase produced in E. coli for enzyme replacement therapy of Morquio A disease. Process Biochem. 47: 2097-2102. https://doi.org/10.1016/j.procbio.2012.07.028
  27. Nandakumar, M. P., A. Cheung, and M. R. Marten. 2006. Proteomic analysis of extracellular proteins from Escherichia coli W3110. J. Proteome Res. 5: 1155-1161. https://doi.org/10.1021/pr050401j
  28. Ni, Y. and R. Chen. 2009. Extracellular recombinant protein production from Escherichia coli. Biotechnol. Lett. 31: 1661-1670. https://doi.org/10.1007/s10529-009-0077-3
  29. Petersen, T. N., S. Brunak, H. G. von, and H. Nielsen. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. https://doi.org/10.1038/nmeth.1701
  30. Poutou-Pinales, R. A., A. Vanegas, P. Landazuri, H. Saenz, L. Lareo, O. Echeverri, and L. A. Barrera. 2010. Human sulfatase transiently and functionally active expressed in E. coli K12. Electron. J. Biotechnol. 13: (3) DOI:10.2225/vol13-issue3-fulltext-8.
  31. Powers, T. and P. Walter. 1997. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16: 4880-4886. https://doi.org/10.1093/emboj/16.16.4880
  32. Rivera-Colon, Y., E. K. Schutsky, A. Z. Kita, and S. C. Garman. 2012. The Structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A. J. Mol. Biol. 423: 736-751. https://doi.org/10.1016/j.jmb.2012.08.020
  33. Rodriguez, A., A. J. Espejo, A. Hernandez, O. L. Velasquez, L. M. Lizaraso, H. A. Cordoba, et al. 2010. Enzyme replacement therapy for Morquio A: An active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21. J. Ind. Microbiol. Biotechnol. 37: 1193-1201. https://doi.org/10.1007/s10295-010-0766-x
  34. Sardiello, M., I. Annunziata, G. Roma, and A. Ballabio. 2005. Sulfatases and sulfatase modifying factors: An exclusive and promiscuous relationship. Hum. Mol. Genet. 14: 3203-3217. https://doi.org/10.1093/hmg/ddi351
  35. Tomatsu, S., A. M. Montano, V. Dung, A. Ohashi, H. Oikawa, T. Oguma, et al. 2010. Enhacement of drug delivery: Enzymereplacement therapy for murine Morquio A syndrome. Mol. Ther. 18: 1094-1102. https://doi.org/10.1038/mt.2010.32
  36. Tomatsu, S., A. M. Montano, H. Oikawa, M. Smith, L. Barrera, Y. Chinen, et al. 2011. Mucopolysaccharidosis type IVA (Morquio A disease): Clinical review and current treatment. Curr. Pharm. Biotechnol. 12: 931-945. https://doi.org/10.2174/138920111795542615
  37. Tomatsu, S., A. Montano, A. Ohashi, H. Oikawa, T. Oguma, V. Dung, et al. 2008. Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum. Mol. Genet. 17: 815-824.
  38. Upadhyay, A. K., A. Murmu, A. Singh, and A. K. Panda. 2012. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli. PLoS ONE 7: e33951. https://doi.org/10.1371/journal.pone.0033951
  39. van Diggelen, O., H. Zhao, W. Kleijer, H. Janse, B. Poorthuis, J. van Pelt, et al. 1990. A fluorometric enzyme assay for the diagnosis of Morquio type A. Clin. Chem. Acta 187: 131-140. https://doi.org/10.1016/0009-8981(90)90339-T
  40. Wang, L. 2009. Towards revealing the structure of bacterial inclusion bodies. Prion 3: 139-145. https://doi.org/10.4161/pri.3.3.9922
  41. Xia, X. X., M. J. Han, S. Y. Lee, and J. S. Yoo. 2008. Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8: 2089-2103. https://doi.org/10.1002/pmic.200700826
  42. Zheng, C., Z. Zhao, Y. Li, L. Wang, and Z. Su. 2011. Effect of IPTG amount on apo- and holo- forms of glycerophosphate oxidase expressed in Escherichia coli. Protein Expr. Purif. 75: 133-137. https://doi.org/10.1016/j.pep.2010.08.009

Cited by

  1. Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome vol.9, pp.None, 2015, https://doi.org/10.2147/dddt.s68562
  2. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris vol.6, pp.None, 2013, https://doi.org/10.1038/srep29329
  3. Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-06367-w
  4. Production and characterization of a human lysosomal recombinant iduronate-2-sulfatase produced in Pichia pastoris : Human Lysosomal Recombinant Iduronate-2-sulfatase vol.65, pp.5, 2013, https://doi.org/10.1002/bab.1660
  5. Research, diagnosis and education in inborn errors of metabolism in Colombia: 20 years’ experience from a reference center vol.13, pp.None, 2013, https://doi.org/10.1186/s13023-018-0879-2
  6. Identification of Ezetimibe and Pranlukast as Pharmacological Chaperones for the Treatment of the Rare Disease Mucopolysaccharidosis Type IVA vol.62, pp.13, 2013, https://doi.org/10.1021/acs.jmedchem.9b00428
  7. A perspective on research, diagnosis, and management of lysosomal storage disorders in Colombia vol.6, pp.3, 2020, https://doi.org/10.1016/j.heliyon.2020.e03635